Skip to main content

Advertisement

Log in

Influence of catchment land use and seasonality on dissolved organic matter composition and ecosystem metabolism in headwater streams of a Kenyan river

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Headwater streams influence the biogeochemical characteristics of large rivers and play important roles in regional and global carbon budgets. The combined effects of seasonality and land use change on the biogeochemistry of headwater streams, however, are not well understood. In this study we assessed the influence of catchment land use and seasonality on the composition of dissolved organic matter (DOM) and ecosystem metabolism in headwater streams of a Kenyan river. Fifty sites in 34 streams draining a gradient of catchment land use from 100% natural forest to 100% agriculture were sampled to determine temporal and spatial variation in DOM composition. Gross primary production (GPP) and ecosystem respiration (ER) were determined in 10 streams draining primarily forest or agricultural catchments. Absorbance and fluorescence spectrophotometry of DOM reflected notable shifts in composition along the land use gradient and with season. During the dry season, forest streams contained higher molecular weight and terrestrially derived DOM, whereas agricultural streams were dominated by autochthonous production and low molecular weight DOM. During the rainy season, aromaticity and high molecular weight DOM increased in agricultural streams, coinciding with seasonal erosion of soils and inputs of organic matter from farmlands. Most of the streams were heterotrophic. However, GPP and ER were generally greater in agricultural streams, driven by higher dissolved nutrient (mainly TDN) concentrations, light availability (open canopy) and temperature compared with forest streams. There were correlations between freshly and autochthonously produced DOM, GPP and ER during both the dry and wet seasons. This is one of the few studies to link land-use with organic carbon dynamics and DOM composition. Measures of ecosystem metabolism in these streams help to affirm the role of tropical streams and rivers as important components of the global carbon cycle and demonstrate that even semi-intensive, smallholder agriculture can have measurable effects on riverine ecosystem functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol Syst 35:257–284. doi:10.1146/annurev.ecolsys.35.120202.110122

    Article  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9:53–60

    Article  Google Scholar 

  • Baker A, Bolton L, Newson M, Spencer R (2008) Spectrophotometric properties of surface water dissolved organic matter in an afforested upland peat catchment. Hydrol Process 22:2325–2336

    Article  Google Scholar 

  • Bano N, Moran MA, Hodson RE (1997) Bacterial utilization of dissolved humic substances from a freshwater swamp. Aquat Microb Ecol 12:233–238

    Article  Google Scholar 

  • Barrón C, Apostolaki ET, Duarte CM (2012) Dissolved organic carbon release by marine macrophytes. Biogeosci Discuss 9(2):1529–1555

    Article  Google Scholar 

  • Barrón C, Apostolaki ET, Duarte C (2014) Dissolved organic carbon fluxes by seagrass meadows and macroalgal beds. Front Mar Sci 1:42

    Google Scholar 

  • Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95–100. doi:10.1038/ngeo101

    Article  Google Scholar 

  • Bernot MJ, Sobota DJ, Hall RO, Mulholland PJ, Dodds WK, Webster JR, Tank JL, Ashkenas LR, Cooper LW, Dahm CN, Gregory SV, Grimm NB, Hamilton SK, Johnson SL, McDowell WH, Meyer JL, Peterson B, Poole GC, Valett HM, Arango C, Beaulieu JJ, Burgin AJ, Crenshaw C, Helton AM, Johnson L, Merriam J, Niederlehner BR, O’Brien JM, Potter JD, Sheibley RW, Thomas SM, Wilson KYM (2010) Inter-regional comparison of land-use effects on stream metabolism. Freshwat. Biol. 55:1874–1890. doi:10.1111/j.1365-2427.2010.02422.x

    Article  Google Scholar 

  • Biers EJ, Zepp RG, Moran MA (2007) The role of nitrogen in chromophoric and fluorescent dissolved organic matter formation. Mar Chem 103:46–60

    Article  Google Scholar 

  • Borges AV, Darchambeau F, Teodoru CR, Marwick TR, Tamooh F, Geeraert N, Omengo FO, Guérin F, Lambert T, Morana C, Okuku E, Bouillon S (2015) Globally significant greenhouse-gas emissions from African inland waters. Nat Geosci. doi:10.1038/NGEO2486

    Google Scholar 

  • Bott TL (2006) Primary productivity and community respiration. In: Hauer FR, Lamberti GA (eds) Methods in stream ecology, 2nd edn. Academic Press, San Diego, pp 663–690

    Google Scholar 

  • Bott TL, Montgomery DS, Newbold JD, Arscott DB, Dow CL, Aufdenkampe AK, Jackson JK, Kaplan LA (2006) Ecosystem metabolism in streams of the Catskill Mountains (Delaware and Hudson River watersheds) and Lower Hudson Valley. J N Am Benthol Soc 25:1018–1044

    Article  Google Scholar 

  • Bouillon S, Abril G, Borges AV, Dehairs F, Govers G, Hughes H, Merckx R, Meysman FJR, Nyunja J, Osburn C, Middelburg JJ (2009) Distribution, origin and cycling of carbon in the Tana River (Kenya): a dry season basin-scale survey from headwaters to the delta. Biogeosciences 6:2475–2493

    Article  Google Scholar 

  • Bouillon S, Yambélé A, Spencer RGM, Gillikin DP, Hernes PJ, Six J, Merckx R, Borges AV (2012) Organic matter sources, fluxes and greenhouse gas exchange in the Oubangui River (Congo River basin). Biogeosciences 9:2045–2062. doi:10.5194/bg-9-2045-2012

    Article  Google Scholar 

  • Bunn SE, Davies PM, Mosisch TD (1999) Ecosystem measures of river healthand their response to riparian and catchment degradation. Freshw Biol 41:333–345

    Article  Google Scholar 

  • Cammack WL, Kalff J, Prairie YT, Smith EM (2004) Fluorescent dissolved organic matter in lakes: relationships with heterotrophic metabolism. Limnol Oceanogr 49:2034–2045

    Article  Google Scholar 

  • Carpenter SR, Stanley EH, Vander Zanden MJ (2011) State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annu Rev Environ Resour 36:75–99. doi:10.1146/annurev-environ-021810-094524

    Article  Google Scholar 

  • Carrascal LM, Galván I, Gordo O (2009) Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118:681–690

    Article  Google Scholar 

  • Chapman CA, Chapman LJ (2003) Deforestation in tropical Africa: impacts on aquatic ecosystems. In: Conservation, ecology, and management of African fresh waters. University Press of Florida, Gainesville, pp 229–246

  • Cleveland CC, Neff JC, Townsend AR, Hood E (2004) Composition, dynamics and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystems 7:275–285

    Article  Google Scholar 

  • Colt J (2012) Dissolved gas concentration in water: computation as functions of temperature. Salinity and Pressure, Elsevier

    Google Scholar 

  • Cory RM, Miller MP, Mcknight DM, Guerard JJ, Miller PL (2010) Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnol Oceanogr Methods 8:67–78. doi:10.4319/lom.2010.8.0067

    Google Scholar 

  • Defersha MB, Melesse AM, McClain ME (2012) Watershed scale application of WEPP and EROSION 3D models for assessment of potential sediment source areas and runoff flux in the Mara River Basin, Kenya. Catena 95:63–72

    Article  Google Scholar 

  • Elmore HL, West WF (1961) Effect of water temperature on stream aeration. J Sanit Eng Div Proc A Soc Civ Eng 87(SA6):59–71

    Google Scholar 

  • Elwood JW, Newbold JD, Trimble AF, Stark RW (1981) The limiting role of phosphorus in a woodland stream ecosystem: effects of P enrichment on leaf decomposition and primary producers. Ecology 62(1):146–158

    Article  Google Scholar 

  • Eriksson L, Hermen JLM, Johansson E, Verhaar HJM, Wold S (1995) Multivariate analysis of aquatic toxicity data with PLS. Aquat Sci 57:217–241

    Article  Google Scholar 

  • Eriksson L, Johansson E, Kettaneh-Wold N, Wold S (1999) Multi-and mega-variate data analysis: principles and applications. Umetrics Academy, Umeå

    Google Scholar 

  • Ewing SA, Sanderman J, Baisden W, Wang Y, Amundson R (2006) Role of large-scale soil structure in organic carbon turnover: evidence from California grassland soils. J Geophys Res 111:G03012

    Article  Google Scholar 

  • FAO—Food and Agriculture Organization of the United Nations (2010) Global Forest Resources Assessment Main Report. FAO Forestry Paper 163. Food and Agriculture Organization of the United Nations, Rome

  • Fellman JB, D’Amore DV, Hood E (2008) An evaluation of freezing as a preservation technique for analyzing dissolved organic C, N and P in surface water samples. Sci Tot Environ 392:305–312

    Article  Google Scholar 

  • Fellman JB, Hood E, Edwards RT, D’Amore DV (2009) Changes in the concentration, biodegradability, and fluorescent properties of dissolved organic matter during stormflows in coastal temperate watersheds. J Geophys Res 114:G01021. doi:10.1029/2008jg000790

    Article  Google Scholar 

  • Fellman JB, Hood E, Spencer RGM (2010) Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol Oceanogr 55:2452–2462

    Article  Google Scholar 

  • Fellows CS, Clapcott JE, Udy JW, Bunn SE, Harch BD, Smith MJ, Davies PM (2006) Benthic metabolism as an indicator of stream ecosystem health. Hydrobiologia 572:71–87

    Article  Google Scholar 

  • Finlay JC, Hood JM, Limm MP, Power ME, Schade JD, Welter JR (2011) Light mediated thresholds in stream-water nutrient composition in a river network. Ecology 92:140–150

    Article  Google Scholar 

  • Frank IE, Friedman JH (1993) A statistical view of some chemometrics regression tools. Technometrics 35(2):109–135

    Article  Google Scholar 

  • Genereux DP, Hemond HF (1992) Determination of gas exchange rate constants for a small stream on Walker Branch Watershed, Tennessee. Water Res Res 28:2365–2374

    Article  Google Scholar 

  • Graeber D, Gelbrecht J, Pusch MT, Anlanger C, von Schiller D (2012) Agriculture has changed the amount and composition of dissolved organic matter in Central European headwater streams. Sci Tot Environ 438:435–446

    Article  Google Scholar 

  • Graeber D, Boëchat IG, Encina-Montoya F, Esse C, Gelbrecht J, Goyenola G, Gücker B, Heinz M, Kronvang B, Meerhoff M, Nimptsch J, Pusch MT, von Silva RCS, Schiller D, Zwirnmann E (2015) Global effects of agriculture on fluvial dissolved organic matter. Sci Rep 5:16328. doi:10.1038/srep16328

    Article  Google Scholar 

  • Griffiths NA, Tank JL, Royer TV, Roley SS, Rosi-Marshall EJ, Whiles MR, Beaulieu JJ, Johnson LT (2013) Agricultural land use alters the seasonality and magnitude of stream metabolism. Limnol Oceanogr 58:1513–1529

    Article  Google Scholar 

  • Gücker B, Boechat IG, Giani A (2009) Impacts of agricultural land use on ecosystem structure and whole-stream metabolism of tropical Cerrado streams. Freshw Biol 54(10):2069–2085. doi:10.1111/j.1365-2427.2008.02069.x

    Article  Google Scholar 

  • Halbedel S, Büttner O, Weitere M (2013) Linkage between the temporal and spatial variability of dissolved organic matter and whole-stream metabolism. Biogeosciences 10:5555–5569

    Article  Google Scholar 

  • Hall RO Jr, Beaulieu JJ (2013) Estimating autotrophic respiration in streams using daily metabolism data. Freshw Sci 32(2):507–516

    Article  Google Scholar 

  • Helms JR, Stubbins A, Ritchie JD, Minor EC, Kieber DJ, Mopper K (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53:955–969

    Article  Google Scholar 

  • Hill WR, Ryon MG, Schilling EM (1995) Light limitation in a stream ecosystem: responses by primary producers and consumers. Ecology 76(4):1297–1309

    Article  Google Scholar 

  • Hudson N, Baker A, Reynolds DM, Carliell-Marquet C, Ward D (2009) Changes in freshwater organic matter fluorescence intensity with freezing/thawing and dehydration/ rehydration. J Geol Res 114:G00F08

    Article  Google Scholar 

  • Huguet A, Vacher L, Relexans S, Saubusse S, Parlanti E, Froidefond JM (2009) Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org Geochem 40:706–719

    Article  Google Scholar 

  • Kaplan LA, Bott TL (1983) Microbial heterotrophic utilization of dissolved organic matter in a Piedmont stream. Freshw Biol 13:363–377

    Article  Google Scholar 

  • Kilonzo F, Masese FO, Van Griensven A, Bauwens W, Obando J, Lens PN (2014) Spatial-temporal variability in water quality and macro-invertebrate assemblages in the upper mara river basin, Kenya. Phys Chem Earth Parts A/B/C 67–69:93–104

    Article  Google Scholar 

  • Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C, George PS, Homewood K, Imbernon J, Leemans R, Li X, Moran EF, Mortimore M, Ramakrishnan PS, Richards JF, Skanes H, Steffen W, Stone GD, Svedin U, Veldkamp TA, Vogel C, Xu J (2001) The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change 11(4):261–269

    Article  Google Scholar 

  • Lepori F, Palm D, Malmqvist B (2005) Effects of stream restoration on ecosystem functioning: detritus retentiveness and decomposition. J Appl Ecol 42:228–238

    Article  Google Scholar 

  • Ludwig W, Amiotte-Suchet P, Probst JL (1996) River discharges of carbon to the world’s oceans: determining local inputs of alkalinity and of dissolved and particulate organic carbon. CR Acad Sci II A 323:1007–1014

    Google Scholar 

  • Magana AEM (2001) Litter input from riparian vegetation to streams: a case study of the Njoro River, Kenya. Hydrobiologia 458:141–149

    Article  Google Scholar 

  • Maie N, Jaffe R, Miyoshi T, Childers DL (2006) Quantitative and qualitative aspects of dissolved organic carbon leached from senescent plants in an oligotrophic wetland. Biogeochemistry 78:285–314

    Article  Google Scholar 

  • Mann CJ, Wetzel RG (1996) Loading and utilization of dissolved organic carbon from emergent macrophytes. Aquat Bot 53:61–72

    Article  Google Scholar 

  • Marzolf ER, Mulholland PJ, Steinman AD (1994) Improvements to the diurnal upstream–downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Can J Fish Aquat Sci 51:1591–1599

    Article  Google Scholar 

  • Masese FO, Kitaka N, Kipkemboi J, Gettel GM, Irvine K, McClain ME (2014a) Macroinvertebrate functional feeding groups in Kenyan highland streams: evidence for a diverse shredder guild. Freshw Sci 33:435–450

    Article  Google Scholar 

  • Masese FO, Kitaka N, Kipkemboi J, Gettel GM, Irvine K, McClain ME (2014b) Litter processing and shredder distribution as indicators of riparian and catchment influences on ecological health of tropical streams. Ecol Indic 46:23–37

    Article  Google Scholar 

  • Matheson FE, Quinn JM, Martin ML (2012) Effects of irradiance on diel and seasonal patterns of nutrient uptake by stream periphyton. Freshw Biol 57:1617–1630. doi:10.1111/j.1365-2427.2012.02822.x

    Article  Google Scholar 

  • Mati BM, Mutie S, Gadain H, Home P, Mtalo F (2008) Impacts of land-use/ cover changes on the hydrology of the transboundary Mara River, Kenya/Tanzania. Lakes Reserv Res Manag 13:169–177

    Article  Google Scholar 

  • MATLAB and Statistics Toolbox Release (2013) The Mathworks, Inc., Natick

  • McClain M (2013) Balancing water resources development and environmental sustainability in Africa: a review of recent research findings and applications. Ambio 42:549–565. doi:10.1007/s13280-012-0359-1

    Article  Google Scholar 

  • McKnight D, Boyer E, Westerhoff P, Doran P, Kulbe T, Andersen D (2001) Characterization of dissolved organic matter for indication of precursor organic Material and aromaticity. Limnol Oceanogr 46:38–48

    Article  Google Scholar 

  • Melching CS, Flores HE (1999) Reaeration equations derived from US Geological Survey database. J Environ Eng 125:407–414

    Article  Google Scholar 

  • Mulholland PJ, Tank JL, Sanzone DM, Wollheim WM, Peterson BJ, Webster JR, Meyer JL (2000) Nitrogen cycling in a forest stream determined by a 15N tracer addition. Ecol Monogr 70:471–493

    Google Scholar 

  • Mulholland PJ et al (2001) Inter-biome comparison of factors controlling stream metabolism. Freshw Biol 46:1503–1517. doi:10.1046/j.1365-2427.2001.00773.x

    Article  Google Scholar 

  • Odum HT (1956) Primary production in flowing waters. Limnol Oceanogr 1:102–117

    Article  Google Scholar 

  • Ogle SM, Breidt FJ, Paustian K (2005) Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry 72:87–121

    Article  Google Scholar 

  • Ortega-Retuerta E, Frazer TK, Duarte CM, Ruiz S, Tovar-Sánchez A, Arrieta JM, Reche I (2009) Biogeneration of chromophoric dissolved organic matter by bacteria and krill in the Southern Ocean. Limnol Oceanogr 54:1941–1950

    Article  Google Scholar 

  • Ortiz-Zayas JR, Lewis WM Jr, Saunders FJ, McCutchan JH (2005) Metabolismofa tropical rainforest stream. J N Am Benthol Soc 24:769–783

    Article  Google Scholar 

  • Peuravuori J, Pihlaja K (1997) Molecular size distribution and spectroscopic properties of aquatic humic substances. Anal Chim Acta 337:133–149

    Article  Google Scholar 

  • Rasera MDFF, Krusche AV, Richey JE, Ballester MV, Victoria RL (2013) Spatial and temporal variability of pCO (2) and CO2 efflux in seven Amazonian Rivers. Biogeochemistry 116(1–3):241

    Article  Google Scholar 

  • Rathbun RE, Stephens DW, Shultz DJ, Tai DY (1978) Laboratory studies of gas tracers for reaeration: American Society of Civil Engineers. J Environ Eng Div 104(EE2):215–229

    Google Scholar 

  • Raymond PA et al (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359

    Article  Google Scholar 

  • Reche I, Pace ML, Cole JJ (1998) Interactions of photobleaching and inorganic nutrients in determining bacterial growth on colored dissolved organic carbon. Microb Ecol 36:270–280

    Article  Google Scholar 

  • Reichert P, Uehlinger U, Acunã V (2009) Estimating stream metabolism from oxygen concentrations: effect of spatial heterogeneity. J Geophys Res 114:G03016. doi:10.1029/2008JG000917

    Article  Google Scholar 

  • Schlünz B, Schneider RR (2000) Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux-and burial rates. Int J Earth Sci 88(4):599–606

    Article  Google Scholar 

  • Silva-Junior EF, Moulton TP, Boëchat IG, Gücker B (2014) Leaf decomposition and ecosystem metabolism as functional indicators of land use impacts on tropical streams. Ecol Indic 36:195–204

    Article  Google Scholar 

  • Smith RG, Cox DA (2014) Effects of soil amendments on the abundance of a parasitic weed, yellow rattle (Rhinanthus minor) in hay fields. Weed Sci 62:118–124

    Article  Google Scholar 

  • Spencer RGM et al (2012) An initial investigation into the organic matter biogeochemistry of the Congo River. Geochim Cosmochim Acta 84:614–627. doi:10.1016/j.gca.2012.01.013

    Article  Google Scholar 

  • Stanley EH, Powers SM, Lottig NR, Buffam I, Crawford JT (2012) Contemporary changes in dissolved organic carbon (DOC) in human-dominated rivers: is there a role for DOC management? Freshw Biol 57:26–42

    Article  Google Scholar 

  • Sun L, Perdue EM, Meyer JL, Weis J (1997) Use of elemental composition to predict bioavailability of dissolved organic matter in a Georgia river. Limnol Oceanogr 42:714–721

    Article  Google Scholar 

  • Tank JL, Rosi-Marshall EJ, Griffiths NA, Entrekin SA, Stephen ML (2010) A review of allochthonous organic matter dynamics and metabolism in streams. J N Am Benthol Soc 29(1):118–146

    Article  Google Scholar 

  • Teodoru CR, Nyoni FC, Borges AV, Darchambeau F, Nyambe I, Bouillon S (2015) Spatial variability and temporal dynamics of greenhouse gas (CO2, CH4, N2O) concentrations and fluxes along the Zambezi River mainstem and major tributaries. Biogeosciences 12:2431–2453

    Article  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108(50):20260–20264. doi:10.1073/pnas.1116437108

    Article  Google Scholar 

  • Tsivoglou BC, Neal LA (1976) Tracer measurement of reaeration. HI. Predicting the capacity of inland streams. J Water Pollut Control Fed 48:669–2689

    Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  • Webster JB, Valett HM (2006) Solute dynamics. In: Hauer FR, Lamberti GR (eds) Methods in stream ecology. Academic Press, London

    Google Scholar 

  • Williams CJ, Yamashita Y, Wilson HF, Jaffe R, Xenopoulos MA (2010) Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnol Oceanogr 55:1159–1171

    Article  Google Scholar 

  • Wilson HF, Xenopoulos MA (2009) Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nat Geosci 2:37–41

    Article  Google Scholar 

  • Wold S (1995) PLS for multivariate linear modelling. In: van de Waterbeenl H (ed) QSAR: chemometric methods in molecular design, methods and principles in medicinal chemistry, vol 2. Verlag Chemie, Weinheim

    Google Scholar 

  • Young RG, Huryn AD (1998) Comment: improvements to the diurnal upstream–downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Can J Fish Aquat Sci 55:1784–1785

    Article  Google Scholar 

  • Young RG, Huryn AD (1999) Effects of land use on stream metabolism and organic matter turnover. Ecol Appl 9:1359–1376

    Article  Google Scholar 

  • Young RG, Matthaei CD, Townsend CR (2008) Organic matter breakdown and ecosystem metabolism: functional indicators for assessing river ecosystem health. J N Am Benthol Soc 27:605–625

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Lubanga Lunaligo and David Namwaya (University of Eldoret) who assisted during lab work and Phillip Sigilai, Robertson Marindany and Kimutai Kitur for assistance during field work. We appreciate the technical assistance offered by Fred Kruis, Ferdi Battes, Lyzette Robbemont, Frank Weigman and Berrend Lolkema during sample analyses at the UNESCO-IHE laboratory in Delft, The Netherlands. Comments from Jacques C. Finlay and four reviewers helped to improve this manuscript. This is a publication of the MaraFlows Project and was funded by the Dutch Ministry of Foreign Affairs through the UNESCO-IHE Partnership Research Fund (UPaRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank O. Masese.

Additional information

Responsible Editor: Jacques C. Finlay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 16 kb)

Supplementary material 2 (XLSB 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masese, F.O., Salcedo-Borda, J.S., Gettel, G.M. et al. Influence of catchment land use and seasonality on dissolved organic matter composition and ecosystem metabolism in headwater streams of a Kenyan river. Biogeochemistry 132, 1–22 (2017). https://doi.org/10.1007/s10533-016-0269-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-016-0269-6

Keywords

Navigation