Skip to main content

Advertisement

Log in

Eutrophication alters Si cycling and litter decomposition in wetlands

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Anthropogenic eutrophication of wetlands may have a significant impact on the global biogeochemical silicon (Si) cycle, as Si filtering by wetland vegetation codetermines fluxes of Si towards the oceans. We experimentally investigated how macronutrient (NPK) enrichment alters total Si storage and Si stoichiometry in litter from six wetland species of Carex, which we related to other parameters of litter quality and litter decomposition rates. Nutrient enrichment stimulated primary biomass production, which resulted in an increased total Si storage in plants. However, this eutrophication-induced stimulatory effect on Si fixation in plant biomass was counterbalanced by consistently lower (up to 50 % reduction) litter Si concentrations in all species, suggesting a plant-physiological response following the relief of nutrient stress. Moreover, competitive species (typical for eutrophic conditions) tended to accumulate less Si (per g DM) than slow-growing species (typical for nutrient-poor conditions). Finally, a negative correlation between litter Si concentrations and litter decomposition rates in nutrient-poor environments suggested an inhibiting effect of Si on decomposition. However, negative correlations between litter Si concentrations and litter macronutrient concentrations as well as positive correlations between litter Si concentrations and C:N and lignin:N ratios indicated a strong interdependence of Si with other litter quality parameters that determine decomposition. We conclude that stimulatory effects of eutrophication on total Si storage in wetland vegetation (following an increase in biomass production) need to be balanced with the plant-physiological response of lower tissue Si concentrations. We argue that rates of Si cycling are likely to be altered through shifts in litter quality and decomposition rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bonar SA, Sehgal HS, Pauley GB, Thomas GL (1990) Relationship between the chemical-composition of aquatic macrophytes and their consumption by grass carp, Ctenopharyngodon idella. J Fish Biol 36(2):149–157

    Article  Google Scholar 

  • Borrelli N, Osterrieth M, Romanelli A, Alvarez MF, Cionchi JL, Massone H (2012) Biogenic silica in wetlands and their relationship with soil and groundwater biogeochemistry in the Southeastern of Buenos Aires Province, Argentina. Environ Earth Sci 65(2):469–480

    Article  Google Scholar 

  • Carey JC, Fulweiler RW (2012) The terrestrial silica pump. Plos One 7(12):e52932

    Article  Google Scholar 

  • Carey JC, Fulweiler RW (2014) Silica uptake by Spartina-evidence of multiple modes of accumulation from salt marshes around the world. Front Plant Sci 5:186

    Article  Google Scholar 

  • Ceulemans T, Merckx R, Hens M, Honnay O (2011) A trait-based analysis of the role of phosphorus vs. nitrogen enrichment in plant species loss across North-west European grasslands. J Appl Ecol 48(5):1155–1163

    Article  Google Scholar 

  • Chapin FS (1991) Integrated responses of plants to stress. Bioscience 41(1):29–36

    Article  Google Scholar 

  • Conley DJ, Likens GE, Buso DC, Saccone L, Bailey SW, Johnson CE (2008) Deforestation causes increased dissolved silicate losses in the Hubbard Brook Experimental Forest. Glob Change Biol 14(11):2548–2554

    Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323(5917):1014–1015

    Article  Google Scholar 

  • Cooke J, Leishman MR (2012) Tradeoffs between foliar silicon and carbon-based defences: evidence from vegetation communities of contrasting soil types. Oikos 121(12):2052–2060

    Article  Google Scholar 

  • Cooke J, Leishman MR (2016) Consistent alleviation of abiotic stress with silicon addition: a meta-analysis. Funct Ecol. doi:10.1111/1365-2435.12713

    Google Scholar 

  • Cornelissen JHC, Thompson K (1997) Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol 135(1):109–114

    Article  Google Scholar 

  • Cramer MD, Hoffmann V, Verboom GA (2008) Nutrient availability moderates transpiration in Ehrharta calycina. New Phytol 179(4):1048–1057

    Article  Google Scholar 

  • DeMaster DJ (1981) The supply and accumulation of silica in the marine-environment. Geochim Cosmochim Acta 45(10):1715–1732

    Article  Google Scholar 

  • Ellenberg H, Leuschner C (1996) Vegetation mitteleuropas mit den Alpen, vol 1095. Ulmer, Stuttgart

    Google Scholar 

  • Emsens WJ, Aggenbach CJS, Grootjans AP, Nfor EE, Schoelynck J, Struyf E, van Diggelen R (2016) Eutrophication triggers contrasting multilevel feedbacks on litter accumulation and decomposition in fens. Ecology. doi:10.1002/ecy.1482

    Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat. doi:10.1086/283244

    Google Scholar 

  • Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324(5927):636–638

    Article  Google Scholar 

  • Hill MO, Mountford J, Roy D, Bunce RGH (1999) Ellenberg’s indicator values for British plants. ECOFACT volume 2 technical annex, vol 2. Institute of Terrestrial Ecology, Hungtindon, p 46

    Google Scholar 

  • Hobbie SE (2015) Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol 30(6):357–363

    Article  Google Scholar 

  • IBM Corp (2013) IBM SPSS Statistics for Windows, Version 22.0. IBM Corp, Armonk

  • Khan FA, Ansari AA (2005) Eutrophication: an ecological vision. Bot Rev 71(4):449–482

    Article  Google Scholar 

  • Kotowski W, Thörig W, van Diggelen R, Wassen MJ (2006) Competition as a factor structuring species zonation in riparian fens—a transplantation experiment. Appl Veg Sci 9(2):231–240

    Article  Google Scholar 

  • Lambers H, Poorter H (1992) Inherent variation in growth-rate between higher-plants—a search for physiological causes and ecological consequences. Adv Ecol Res 23:187–261

    Article  Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11(8):392–397

    Article  Google Scholar 

  • Ma JF, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. Stud Plant Sci 8:17–39

    Article  Google Scholar 

  • Maavara T, Dürr HH, Van Cappellen P (2014) Worldwide retention of nutrient silicon by river damming: from sparse data set to global estimate. Glob Biogeochem Cycles 28(8):842–855

    Article  Google Scholar 

  • Massey FP, Hartley SE (2006) Experimental demonstration of the antiherbivore effects of silica in grasses: impacts on foliage digestibility and vole growth rates. Proc R Soc B 273(1599):2299–2304

    Article  Google Scholar 

  • Meharg C, Meharg AA (2015) Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environ Exp Bot 120:8–17

    Article  Google Scholar 

  • Opdekamp W, Teuchies J, Vrebos D, Chormanski J, Schoelynck J, van Diggelen R, Meire P, Struyf E (2012) Tussocks: biogenic silica hot-spots in a riparian wetland. Wetlands 32(6):1115–1124

    Article  Google Scholar 

  • Schaller J, Struyf E (2013) Silicon controls microbial decay and nutrient release of grass litter during aquatic decomposition. Hydrobiologia 709(1):201–212

    Article  Google Scholar 

  • Schaller J, Brackhage C, Gessner MO, Bauker E, Dudel EG (2012) Silicon supply modifies C:N:P stoichiometry and growth of Phragmites australis. Plant Biol 14(2):392–396

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  Google Scholar 

  • Schoelynck J, Struyf E (2016) Silicon in aquatic vegetation. Funct Ecol 30:1323–1330

    Article  Google Scholar 

  • Schoelynck J, Bal K, Backx H, Okruszko T, Meire P, Struyf E (2010) Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose? New Phytol 186(2):385–391

    Article  Google Scholar 

  • Schoelynck J, Bal K, Puijalon S, Meire P, Struyf E (2012) Hydrodynamically mediated macrophyte silica dynamics. Plant Biol 14(6):997–1005

    Article  Google Scholar 

  • Schoelynck J, Müller F, Vandevenne F, Bal K, Barão L, Smis A, Opdekamp W, Meire P, Struyf E (2014) Silicon–vegetation interaction in multiple ecosystems: a review. J Veg Sci 25(1):301–313

    Article  Google Scholar 

  • Schoelynck J, Puijalon S, Meire P, Struyf E (2015) Thigmomorphogenetic responses of an aquatic macrophyte to hydrodynamic stress. Front Plant Sci. doi:10.3389/fpls.2015.00043

    Google Scholar 

  • Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100(1–3):179–196

    Article  Google Scholar 

  • Struyf E, Conley DJ (2009) Silica: an essential nutrient in wetland biogeochemistry. Front Ecol Environ 7(2):88–94

    Article  Google Scholar 

  • Struyf E, Conley DJ (2012) Emerging understanding of the ecosystem silica filter. Biogeochemistry 107(1–3):9–18

    Article  Google Scholar 

  • Struyf E, Van Damme S, Gribsholt B, Bal K, Beauchard O, Middelburg JJ, Meire P (2007) Phragmites australis and silica cycling in tidal wetlands. Aquat Bot 87(2):134–140

    Article  Google Scholar 

  • Struyf E, Morth CM, Humborg C, Conley DJ (2010) An enormous amorphous silica stock in boreal wetlands. J Geophys Res. doi:10.1029/2010JG001324/suppinfo

    Google Scholar 

  • Taylor BR, Parkinson D, Parsons WF (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70(1):97–104

    Article  Google Scholar 

  • Van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. J Assoc Offi Agric Chem 46:829–835

    Google Scholar 

  • Vandevenne F, Struyf E, Clymans W, Meire P (2012) Agricultural silica harvest: have humans created a new loop in the global silica cycle? Front Ecol Environ 10(5):243–248

    Article  Google Scholar 

  • Vandevenne FI, Barão AL, Schoelynck J, Smis A, Ryken N, Van Damme S, Meire P, Struyf E (2013) Grazers: biocatalysts of terrestrial silica cycling. Proc R Soc Lond B 280(1772):20132083

    Article  Google Scholar 

  • Walinga I, van Vark W, Houba VJG, van der Lee JJ (1989) Plant analysis procedures. Soil and plant analysis, Part 7. Agricultural University, Wageningen, pp 13–16

    Google Scholar 

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199(2):213–227

    Article  Google Scholar 

  • Wider RK, Lang GE (1982) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63(6):1636–1642

    Article  Google Scholar 

Download references

Acknowledgments

We thank Anne Cools and Tom van der Spiet for lab support, and Enyi Emmanuel Nfor for assistance with the experiments. This study was financed by the FWO Fund for Scientific Research (11M0414 N to WJE). JS is a postdoctoral fellow of FWO (12H8616 N). The experiments were conducted in a greenhouse owned by the municipality of Antwerp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem-Jan Emsens.

Additional information

Responsible Editor: J. M. Melack.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emsens, WJ., Schoelynck, J., Grootjans, A.P. et al. Eutrophication alters Si cycling and litter decomposition in wetlands. Biogeochemistry 130, 289–299 (2016). https://doi.org/10.1007/s10533-016-0257-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-016-0257-x

Keywords

Navigation