Skip to main content

Advertisement

Log in

An assessment of karstic submarine groundwater and associated nutrient discharge to a Mediterranean coastal area (Balearic Islands, Spain) using radium isotopes

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Short and long-lived radium isotopes (223Ra, 224Ra, 226Ra, 228Ra) were used to quantify submarine groundwater discharge (SGD) and its associated input of inorganic nitrogen (NO3 ), phosphorus (PO4 3−) and silica (SiO4 4−) into the karstic Alcalfar Cove, a coastal region of Minorca Island (Western Mediterranean Sea). Cove water, seawater and groundwater (wells and karstic springs) samples were collected in May 2005 and February 2006 for radium isotopes and in November 2007 for dissolved inorganic nutrients. Salinity profiles in cove waters suggested that SGD is derived from shallow brackish springs that formed a buoyant surface fresh layer of only 0.3 m depth. A binary mixing model that considers the distribution of radium activities was used to determine the cove water composition. Results showed that cove waters contained 20% brackish groundwater; of which 6% was recirculated seawater and 14% corresponded to freshwater discharge. Using a radium-derived residence time of 2.4 days, a total SGD flux of 150,000 m3 year−1 was calculated, consisting of 45,000 m3 year−1 recirculated seawater and 105,000 m3 year−1 fresh groundwater. Fresh SGD fluxes of NO3 , SiO4 4− and PO4 3− were estimated to be on the order of 18,000, 1,140 and 4 μmol m−2 day−1, respectively, and presumably sustain the high phytoplankton biomass observed in the cove during summer. The total amount of NO3 and SiO4 4− supplied by SGD was higher than the measured inventories in the cove, while the reverse was true for PO4 3−. These discrepancies are likely due to non-conservative biogeochemical processes that occur within the subterranean estuary and Alcalfar Cove waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25(4b):704–726

    Article  Google Scholar 

  • Barón A, Bayó A, Fayas J (1979) Relación modelo geológico-modelo hidrogeológico. Ejemplo: el acuífero mioceno de la isla de Menorca. Act. II Simposio Nacional Hidrogeología, vol 4. Pamplona, p 19

  • Basterretxea G, Garcés E, Jordi A, Masó M, Tintoré J (2005) Breeze conditions as a favoring mechanism of Alexandrium taylori blooms at a Mediterranean beach. Estuar Coast Shelf Sci 62:1–12

    Article  Google Scholar 

  • Basterretxea G, Garcés E, Jordi A, Angles S, Masó M (2007) Modulation of nearshore harmful algal blooms by in situ growth rate and water renewal. Mar Ecol Prog Ser 352:53–65

    Article  Google Scholar 

  • Beck AJ, Rapaglia JP, Cochran JK, Bokuniewicz HJ (2007) Radium mass-balance in Jamaica Bay, NY: evidence for a substantial flux of submarine groundwater. Mar Chem 106:419–441

    Article  Google Scholar 

  • Bird FL, Ford PW, Hancock GJ (1999) Effect of burrowing macrobenthos on the flux of dissolved substances across the water-sediment interface. Mar Freshw Res 50:523–532

    Article  Google Scholar 

  • Bourrouilh R (1983) Stratigraphie, sediméntologie et tectonique de l’île de Minorque et du Nord-Est de Majorque (Baléares). La terminaison Nord-orientale des Cordillères Bétiques en Méditerranée occidentale. Memorias del Instituto Geológico y Minero de España 99:1–672

    Google Scholar 

  • Burnett WC, Dulaiova H (2003) Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. J Environ Radioact 69:21–35

    Article  Google Scholar 

  • Burnett WC, Cowart JB, Deetae S (1990) Radium in the Suwannee River and estuary. Spring and river input to the Gulf of Mexico. Biogeochemistry 10:237–255

    Article  Google Scholar 

  • Burnett WC, Bokuniewicz H, Huettel M, Moore WS, Taniguchi M (2003) Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66:3–33

    Article  Google Scholar 

  • Burnett WC, Aggarwal PK, Aureli A, Bokuniewicz H, Cable JE, Charette MA, Kontar E, Krupa S, Kulkarni KM, Loveless A, Moore WS, Oberdorfer JA, Oliveira J, Ozyurt N, Povinec P, Privitera AMG, Rajar R, Ramessur RT, Scholten J, Stieglitz T, Taniguchi M, Turner JV (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367:498–543

    Article  Google Scholar 

  • Cable JE, Corbett DR, Walsh MM (2002) Phosphate uptake in coastal limestone aquifers: a fresh look at wastewater management. Limnol Oceanogr Bull 11(2):29–32

    Google Scholar 

  • Capone DG, Bautista M (1985) A groundwater source of nitrate in nearshore marine sediments. Nature 313:214–216

    Article  Google Scholar 

  • Capone DG, Slater JM (1990) Interannual patterns of water-table height and groundwater derived nitrate in nearshore sediments. Biogeochemistry 10(3):277–288

    Article  Google Scholar 

  • Carreras D, Pons C, Canals A (2002) Cartografia digital de l’ocupació del territori de Menorca-2002. OBSAM-IME, Minorca. http://www.obsam.cat/documents/informes/cartografia-digital-ocupacio-territori-Menorca-2002.pdf

  • Charette MA, Allen MC (2006) Precision ground water sampling in coastal aquifers using a direct-push, shielded-screen well-point system. Ground Water Monit Remediat 26(2):87–93

    Article  Google Scholar 

  • Charette MA, Buesseler KO (2004) Submarine groundwater discharge of nutrients and copper to an urban subestuary of Chesapeake Bay (Elizabeth River). Limnol Oceanogr 49(2):376–385

    Google Scholar 

  • Charette MA, Scholten JC (2008) Marine chemistry special issue: the renaissance of radium isotopic tracers in marine processes studies. Mar Chem 109:185–187

    Article  Google Scholar 

  • Charette MA, Buesseler KO, Andrews JE (2001) Utility of radium isotopes for evaluating the input and transport of groundwater-derived nitrogen to a Cape Cod estuary. Limnol Oceanogr 46:465–470

    Google Scholar 

  • Corbett DR, Dillon K, Burnett W, Chanton J (2000) Estimating the groundwater contribution into Florida Bay via natural tracers 222Rn and CH4. Limnol Oceanogr 45:1546–1557

    Article  Google Scholar 

  • Dahm CN, Grimm NB, Marmonier P, Valett HM, Vervier P (1998) Nutrient dynamics at the interface between surface waters and groundwaters. Freshw Biol 40:427–451

    Article  Google Scholar 

  • Estradé S (2005) Aportacions al coneixement del balanç hídric de l’aqüífer de migjorn de Menorca. OBSAM, Minorca. http://www.obsam.cat/documents/posters/Balans-hidric.pdf

  • Fayas JA (1972) Estudio de los recursos hidráulicos totales de la isla de Menorca. Servicio Geológico de Obras Públicas I, Madrid

    Google Scholar 

  • Fayas JA (1982) Estudio marco para el aprovechamiento de los recursos hidráulicos de Menorca. Consell Insular de Menorca, Minorca

    Google Scholar 

  • Fornós JJ, Obrador A, Rosselló VM (2004) Història Natural del Migjorn de Menorca, vol 11. Societat d’Història Natural de les Balears, pp 1–378

  • Fourqurean JW, Jones RD, Zieman JC (1993) Processes influencing water column nutrient characteristics and phosphorus limitation of phytoplankton biomass in Florida Bay, FL, USA: inferences from spatial distributions. Estuar Coast Shelf Sci 36:295–314

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs

  • Garcia-Solsona E, Garcia-Orellana J, Masqué P, Dulaiova H (2008) Uncertainties associated with 223Ra and 224Ra measurements in water via a Delayed Coincidence Counter (RaDeCC). Mar Chem 109:198–219

    Article  Google Scholar 

  • Garrison GH, Glenn CR, McMurtry GM (2003) Measurement of submarine groundwater discharge in Kahana Bay, O’ahu, Hawai‘i. Limnol Oceanogr 48(2):920–928

    Google Scholar 

  • Glibert PM, Burkholder JM, Graneli E, Anderson DM (2008) HABs and eutrophication. Harmful Algae 8(1):1–88

    Article  Google Scholar 

  • Grasshoff K, Ehrhardt M, Kremling K (1999) Methods of seawater analysis. Chapter 4: Determination of nutrients, 3rd edn. Verlag Chemie, Weinheim

    Google Scholar 

  • Hallegraeff G (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32:79–99

    Google Scholar 

  • Hwang DW, Kim G, Lee YW, Yang HS (2005) Estimating submarine inputs of groundwater and nutrients to a coastal bay using radium isotopes. Mar Chem 96:61–71

    Article  Google Scholar 

  • Illoul H, Masó M, Reñé A, Anglès S (2007) Gymnodinium chlorophorum causante de proliferaciones de altas biomasas en aguas recreativas de las islas Baleares (veranos 2004-2006). IX Reunión Ibérica sobre Fitoplancton Tóxico y Biotoxinas, Cartagena, 7–10 May 2007

  • Ivanovich M, Harmon RS (1992) Uranium series disequilibrium: applications to earth, marine and environmental sciences. Clarendon Press, Oxford

    Google Scholar 

  • Justic D, Rabalais NN, Turner RE (1995a) Stoichiometric nutrient balance and origin of coastal eutrophication. Mar Pollut Bull 30:41–46

    Article  Google Scholar 

  • Justic D, Rabalais NN, Turner RE, Dortch Q (1995b) Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuar Coast Shelf Sci 40:339–356

    Article  Google Scholar 

  • Krest JM, Moore WS, Rama (1999) 226Ra and 228Ra in the mixing zones of the Mississippi and Atchafalaya Rivers: indicators of groundwater input. Mar Chem 64:129–152

    Article  Google Scholar 

  • Kroeger KD, Swarzenski PW, Greenwood WJ, Reich C (2007) Submarine groundwater discharge to Tampa Bay: nutrient fluxes and biogeochemistry of the coastal aquifer. Mar Chem 104:85–97

    Article  Google Scholar 

  • LaMoreaux PE, LaMoreaux J (2007) Karst: the foundation for concepts in hydrogeology. Environ Geol 51:685–688. doi:10.1007/s00254-006-0378-y

    Article  Google Scholar 

  • Laws EA (1983) Man’s impact on the marine nitrogen cycle. In: Carpenter EJ, Capone DG (eds) Nitrogen in the marine environment. Academic Press, New York, pp 459–485

    Google Scholar 

  • López-García JM (2004) El estado de las aguas subterráneas en el archipiélago Balear. Isla de Menorca, Instituto Geológico y Minero de Esoaña. http://www.caib.es/fitxer/get?codi=185022

  • Maramathas A, Pergialiotis P, Gialamas I (2006) Contribution to the identification of the sea intrusion mechanism of brackish karst springs. Hydrogeol J 14:657–662

    Article  Google Scholar 

  • Maso M, Garcés E (2006) Harmful microalgae blooms (HAB): problematic and conditions that induce them. Mar Pollut Bull 53(10–12):620–630

    Article  Google Scholar 

  • Masqué P, Sanchez-Cabeza JA, Bruach JM, Palacios E, Canals M (2002) Balance and residence times of 210Pb and 210Po in surface waters of the northwestern Mediterranean Sea. Cont Shelf Res 22:2127–2146

    Article  Google Scholar 

  • Moore WS (1976) Sampling 226Ra in the deep ocean. Deep Sea Res 23:647–651

    Google Scholar 

  • Moore WS (1996) Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 380:612–614

    Article  Google Scholar 

  • Moore WS (1999) The subterranean estuary: a reaction zone of ground water and sea water. Mar Chem 65:111–126

    Article  Google Scholar 

  • Moore WS (2000) Ages of continental shelf waters determined from 223Ra and 224Ra. J Geophys Res 105:22117–22122

    Article  Google Scholar 

  • Moore WS (2005) The role of submarine groundwater discharge in coastal biogeochemistry. J Geochem Explor 88:389–393

    Article  Google Scholar 

  • Moore WS, Arnold R (1996) Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter. J Geophys Res 101:1321–1329

    Article  Google Scholar 

  • Moore WS, Astwood H, Lindstrom C (1995) Radium isotopes in coastal waters on the Amazon shelf. Geochim Cosmochim Acta 59(20):4285–4298

    Article  Google Scholar 

  • Moore WS, Blanton JO, Joye SB (2006) Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. J Geophys Res 111:C09006. doi:10.1029/2005JC003041

    Article  Google Scholar 

  • Nixon SW (1995) Coastal eutrophication: a definition, social causes, and future concerns. Ophelia 41:199–220

    Google Scholar 

  • Ollivier P, Claude C, Radakovitch O, Hamelin B (2008) TIMS measurements of 226Ra and 228Ra in the Gulf of Lion, an attempt to quantify submarine groundwater discharge. Mar Chem 109:337–354

    Article  Google Scholar 

  • Paytan A, Shellenbarger GG, Street JH, Gonneea ME, Davis K, Young MB, Moore WS (2006) Submarine groundwater discharge: an important source of new inorganic nitrogen to coral reef ecosystems. Limnol Oceanogr 51:343–348

    Article  Google Scholar 

  • Rabalais NN, Turner RE, Dortch Q, Justic D, Bierman VJ, Wiseman WJ (2002) Nutrient-enhanced productivity in the northern Gulf of Mexico: past, present and future. Hydrobiologia 475(476):39–63

    Article  Google Scholar 

  • Rama M, Moore WS (1996) Using the radium quartet for evaluating ground water input and water exchange in salt marshes. Geochim Cosmochim Acta 60(23):4645–4652

    Article  Google Scholar 

  • Schmidt S, Reyss JL (1996) Radium as internal tracer of Mediterranean Outflow Water. J Geophys Res 101:3589–3596

    Article  Google Scholar 

  • Slomp CP, Cappellen PV (2004) Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295:64–86

    Article  Google Scholar 

  • Smayda TJ (1997) Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol Oceanogr 42(5, part 2):1137–1153

    Article  Google Scholar 

  • Street JH, Knee KL, Grossman EE, Paytan A (2008) Submarine groundwater discharge and nutrient addition to the coastal zone and coral reefs of leeward Hawai’i. Mar Chem 109:355–376

    Article  Google Scholar 

  • Sturchio NC, Banner JL, Binz CM, Heraty LB, Musgrove M (2001) Radium geochemistry of ground waters in Paleozoic carbonate aquifers, midcontinent, USA. Appl Geochem 16:109–122

    Article  Google Scholar 

  • Sun Y, Torgersen T (1998) The effects of water content and Mn-fiber surface conditions on 224Ra measurement by 220Rn emanation. Mar Chem 62:299–306

    Article  Google Scholar 

  • Tapia González FU, Herrera-Silveira JA, Aguirre-Macedo ML (2008) Water quality variability and eutrophic trends in karstic tropical coastal lagoons of the Yucatán Peninsula. Estuar Coast Shelf Sci 76:418–430

    Article  Google Scholar 

  • Trilla J (1979) Hidrogeologia. Enciclopedia de Menorca, vol I, Ed Obra cultural Menorca, Maó, pp 239–264

  • UNESCO (2004) Submarine groundwater discharge. Management implications, measurements and effects. IHP-VI, Series on groundwater 5. IOC manuals and guides 44. ISBN 92-9220-006-2

  • Von Gunten HR, Surbeck H, Rossler E (1996) Uranium series disequilibrium and high thorium and radium enrichments in karst formations. Environ Sci Technol 30:1268–1274

    Article  Google Scholar 

  • Weiskei PK, Howes BL (1992) Differential transport of sewage-derived nitrogen and phosphorus through a coastal watershed. Environ Sci Technol 26:352–360

    Article  Google Scholar 

  • Zanini L, Robertson WD, Ptacek CJ, Schiff SL, Mayer T (1998) Phosphorus characterization in sediments impacted by septic effluent at four sites in central Canada. J Contam Hydrol 33(3–4):405–429

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge F. Garcia-Olives, C. Hanfland, C. Sintes-Gomila, P. Monjo, and D. Sintes (Aigües de Sant Lluís) for their help and assistance during field work. The authors specially thank the Laboratori de Radioactivitat Ambiental staff for expert and fun collaboration. We also want to acknowledge R. Ventosa for her assistance with nutrient analyses. The authors are indebted to Claudia Benitez-Nelson for her valuable suggestions and her help in improving the manuscript. This project has been partially supported by the Institut Menorquí d’Estudis (IME) and the Departament d’Universitats, Recerca i Societat de la Informació of the Generalitat de Catalunya (PICS program no. 2434). Support from the Spanish Government and the Fulbright Commission for a post-doctoral fellowship to J.G.-O. (ref 2007-0516) is gratefully acknowledged. Support for the research of PM was received through the prize “ICREA Academia”, funded by the Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Garcia-Solsona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia-Solsona, E., Garcia-Orellana, J., Masqué, P. et al. An assessment of karstic submarine groundwater and associated nutrient discharge to a Mediterranean coastal area (Balearic Islands, Spain) using radium isotopes. Biogeochemistry 97, 211–229 (2010). https://doi.org/10.1007/s10533-009-9368-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-009-9368-y

Keywords

Navigation