Skip to main content

Advertisement

Log in

Phosphorus dynamics and loading in the turbid Minnesota River (USA): controls and recycling potential

  • Original Paper
  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Phosphorus (P) dynamics in the agriculturally-dominated Minnesota River (USA) were examined in the lower 40 mile reach in relation to hydrology, loading sources, suspended sediment, and chlorophyll to identify potential biotic and abiotic controls over concentrations of soluble P and the recycling potential of particulate P during transport to the Upper Mississippi River. Within this reach, wastewater treatment plant (WWTP) contributions as soluble reactive P (SRP) were greatest during very low discharge and declined with increasing discharge and nonpoint source P loading. Concentrations of SRP declined during low discharge in conjunction with increases in chlorophyll, suggesting biotic transformation to particulate P via phytoplankton uptake. During higher discharge periods, SRP was constant at ~0.115 mg l−1 and coincided with an independently measured equilibrium P concentration (EPC) for suspended sediment in the river, suggesting abiotic control over SRP via phosphate buffering. Particulate P (PP) accounted for 66% of the annual total P load. Redox-sensitive PP, estimated using extraction procedures, represented 43% of the PP. Recycling potential of this load via diffusive sediment P flux under anoxic conditions was conservatively estimated as ~17 mg m−2 d−1 using published regression equations. The reactive nature and high P recycling potential of suspended sediment loads in the Minnesota River has important consequences for eutrophication of the Upper Mississippi River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexander RB, Smith RA, Scharz GE (2000) Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature 503:758–761. doi:10.1038/35001562

    Article  Google Scholar 

  • American Public Health Association (1998) Standard methods for the examination of water and wastewater, 20th edn. Washington, DC

  • Aminot A, Andrieux F (1996) Concept and determination of exchangeable phosphate in aquatic sediments. Water Res 30:2805–2811. doi:10.1016/S0043-1354(96)00192-3

    Article  Google Scholar 

  • Barrow NJ (1979) Three effects of temperature on the reactions between inorganic phosphate and soil. Eur J Soil Sci 30:271–279. doi:10.1111/j.1365-2389.1979.tb00984.x

    Article  Google Scholar 

  • Bennett EM, Carpenter SR, Caraco NF (2001) Human impact on erodable phosphorus and eutrophication: a global perspective. Bioscience 51:227–234. doi:10.1641/0006-3568(2001)051[0227:HIOEPA]2.0.CO;2

    Article  Google Scholar 

  • Berner RA, Rao J-L (1994) Phosphorus in sediment of the Amazon River and estuary: implications for the global flux of phosphorus to the sea. Geochim Cosmochim Acta 58:2333–2339. doi:10.1016/0016-7037(94)90014-0

    Article  Google Scholar 

  • Bolster CH, Hornberger GM (2007) On the use of linearized Langmuir equations. Soil Sci Soc Am J 71:1796–1806. doi:10.2136/sssaj2006.0304

    Article  Google Scholar 

  • Boström B, Jansson M, Forsberg C (1982) Phosphorus release from lake sediments. Arch Hydrobiol Beih Ergebn Limnol 18:5–59

    Google Scholar 

  • Bukaveckas PA, Guelda DL, Jack J, Koch R, Sellers T, Shostell J (2005) Effects of point source loadings, sub-basin inputs and longitudinal variation in material retention on C, N and P delivery from the Ohio River Basin. Ecosystems (NY, Print) 8:825–840. doi:10.1007/s10021-005-0044-3

    Article  Google Scholar 

  • Carignan R, Vaithiyanathan P (1999) Phosphorus availability in the Paraná lakes (Argentina): influence of pH and phosphate buffering by fluvial sediments. Limnol Oceanogr 44:1540–1548

    Google Scholar 

  • Carpenter SR (2005) Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc Natl Acad Sci USA 102:10002–10005. doi:10.1073/pnas.0503959102

    Article  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568. doi:10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2

    Article  Google Scholar 

  • Chang-Ying F, Fang T, Sheng Deng N (2006) The research of phosphorus of Xiangxi River nearby Three Gorges, China. Environ Geol 49:923–928. doi:10.1007/s00254-005-0124-x

    Article  Google Scholar 

  • Chételat J, Pick FR, Hamilton PB (2006) Potamoplankton size structure and taxonomic composition: influence of river size and nutrient concentrations. Limnol Oceanogr 51:681–689

    Google Scholar 

  • Cole JJ, Peierls BL, Caraco NJ, Pace ML (1993) Nitrogen loading of rivers as a human-driven process. In: McDonnell MJ, Pickett STA (eds) Humans as components of ecosystems: the ecology of subtle human effects and populated areas. Springer-Verlag, Berlin

    Google Scholar 

  • Davis RL, Zhang H, Schroder JL, Wang JJ, Payton ME, Zazulak A (2005) Soil characteristics and phosphorus level effect on phosphorus loss in runoff. J Environ Qual 34:1640–1650. doi:10.2134/jeq2004.0480

    Article  Google Scholar 

  • Ekholm P (1994) Bioavailability of phosphorus in agriculturally loaded rivers in southern Finland. Hydrobiol 287:179–194

    Google Scholar 

  • Evans DJ, Johnes PJ, Lawrance DS (2004) Physico-chemical controls on phosphorus cycling in two lowland streams. Part 2—the sediment phase. Sci Total Environ 329:165–182. doi:10.1016/j.scitotenv.2004.02.023

    Article  Google Scholar 

  • Fang F, Brezonik PL (2002) Phosphorus retention by river suspended sediment in the Minnesota-Mississippi Rivers system. Thesis, University of Minnesota

  • Fang F, Brezonik PL, Mulla DJ, Hatch LK (2002) Estimating runoff phosphorus losses from calcareous soils in the Minnesota River Basin. J Environ Qual 31:1918–1929

    Google Scholar 

  • Fang F, Brezonik PL, Mulla DJ, Hatch LK (2005) Characterization of soil algal bioavailable phosphorus in the Minnesota River Basin. Soil Sci Soc Am J 69:1016–1025

    Google Scholar 

  • Froelich PN (1988) Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism. Limnol Oceanogr 33:49–668

    Google Scholar 

  • Gächter R, Meyer JS, Mares A (1988) Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnol Oceanogr 33:1542–1558

    Google Scholar 

  • Goolsby DA, Battaglin WA (2001) Long-term changes in concentrations and flux of nitrogen in the Mississippi River Basin, USA. Hydrol Process 15:1209–1226. doi:10.1002/hyp.210

    Article  Google Scholar 

  • Gosselain V, Viroux L, Desey J-P (1998) Can a community of small-bodied grazers control phytoplankton in rivers? Freshw Biol 39:9–24. doi:10.1046/j.1365-2427.1998.00258.x

    Article  Google Scholar 

  • Guildford SJ, Hecky RE (2000) Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnol Oceanogr 45:1213–1223

    Google Scholar 

  • Hjieltjes AH, Lijklema L (1980) Fractionation of inorganic phosphorus in calcareous sediments. J Environ Qual 8:130–132

    Google Scholar 

  • House WA (2003) Geochemical cycling of phosphorus in rivers. Appl Geochem 18:739–748. doi:10.1016/S0883-2927(02)00158-0

    Article  Google Scholar 

  • House WA, Denison FH (1998) Phosphorus dynamics in a lowland river. Water Res 32:1819–1830. doi:10.1016/S0043-1354(97)00407-7

    Article  Google Scholar 

  • House WA, Denison FH (2000) Factors influencing the measurement of equilibrium phosphate concentrations in river sediments. Water Res 34:1187–1200. doi:10.1016/S0043-1354(99)00249-3

    Article  Google Scholar 

  • Howarth RW, Jensen HS, Marino R, Postma H (1995) Transport to and processing of P in near-shore and oceanic waters. In: Golterman HL, Serrano L (eds) Phosphate in sediments. Backuys Publ., Leiden

    Google Scholar 

  • Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K et al (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35:75–139. doi:10.1007/BF02179825

    Article  Google Scholar 

  • Howarth RW, Sharpley A, Walker D (2002) Sources of nutrient pollution to coastal waters in the United States: implications for achieving coastal water quality goals. Estuaries 25:656–676

    Article  Google Scholar 

  • Hupfer M, Lewandowski J (2005) Retention and early diagenetic transformation of phosphorus in Lake Arendsee (Germany)—consequences for management strategies. Arch Hydrobiol 164:143–167. doi:10.1127/0003-9136/2005/0164-0143

    Article  Google Scholar 

  • James WF, Barko JW (2004) Diffusive fluxes and equilibrium processes in relation to phosphorus dynamics in the Upper Mississippi River. River Res Appl 20:473–484. doi:10.1002/rra.761

    Article  Google Scholar 

  • James WF, Barko JW (2005) Biologically labile and refractory phosphorus loads from the agriculturally-managed Upper Eau Galle River watershed, Wisconsin. Lake Res Manage 21:165–173

    Article  Google Scholar 

  • James WF, Barko JW, Eakin HL (2002) Labile and refractory forms of phosphorus in runoff of the Redwood River Basin, Minnesota. J Freshw Ecol 17:297–304

    Google Scholar 

  • Jensen HS, Thamdrup B (1993) Iron-bound phosphorus in marine sediments as measured by bicarbonate-dithionite extraction. Hydrobiologia 253:47–59. doi:10.1007/BF00050721

    Article  Google Scholar 

  • Jensen HS, Bendixen T, Andersen FØ (2006) Transformation of particle-bound phosphorus at the land-sea interface in a Danish estuary. Water Air Soil Pollut Focus 6:547–555. doi:10.1007/s11267-006-9038-1

    Article  Google Scholar 

  • Kelley DW, Nater EA (2000) Historical sediment flux from three watersheds into Lake Pepin, Minnesota, USA. J Environ Qual 29:561–568

    Google Scholar 

  • Klotz RL (1985) Factors controlling phosphorus limitation in stream sediments. Limnol Oceanogr 30:543–553

    Google Scholar 

  • Larson CE, Johnson DK, Flood RJ, Meyer ML, O’Dea TJ, Schellhaass SM (2002) Lake Pepin phosphorus study, 1994–1998. Effects of phosphorus loads on the water quality of the Upper Mississippi River, Lock and Dam 1 through Lake Pepin. Final Report Metropolitan Council Environmental Services, St. Paul, MN, USA

  • Mainstone C, Parr W (2002) Phosphorus in rivers—ecology and management. Sci Total Environ 282–283:25–47. doi:10.1016/S0048-9697(01)00937-8

    Article  Google Scholar 

  • Meyer JL (1979) The role of sediments and bryophytes in phosphorus dynamics in a headwater stream ecosystem. Limnol Oceanogr 24:365–375

    Article  Google Scholar 

  • Mayer LM, Gloss SP (1980) Buffering of silica and phosphate in a turbid river. Limnol Oceanogr 25:12–25

    Google Scholar 

  • Meyer ML, Schellhaass SM (2002) Sources of phosphorus, chlorophyll, and sediment to the Mississippi River upstream of Lake Pepin: 1976–1996. Metropolitan Council Environmental Services, St Paul, MN

    Google Scholar 

  • Newbold JD (1992) Cycles and spirals of nutrients. In: Calow P, Petts GE (eds) The rivers handbook, vol 1. Blackwell Scientific, Oxford

    Google Scholar 

  • Newbold JD, Elwood RV, O’Neill RV, Van Winkle W (1981) Measuring nutrient spiralling in streams. Can J Fish Aquat Sci 38:860–863

    Google Scholar 

  • Nürnberg GK (1988) Prediction of phosphorus release rates from total and reductant soluble phosphorus in anoxic lake sediments. Can J Fish Aquat Sci 44:960–966

    Google Scholar 

  • Pacini N, Gächter R (1999) Speciation of riverine particulate phosphorus during rain events. Biogeochemistry 47:87–109

    Google Scholar 

  • Peierls BL, Caraco NF, Pace ML, Cole JJ (1991) Human influence on river nitrogen. Nature 350:416–419. doi:10.1038/350386b0

    Article  Google Scholar 

  • Petticrew EL, Arocena JM (2001) Evaluation of iron-phosphate as a source of internal lake phosphorus loadings. Sci Total Environ 266:87–93. doi:10.1016/S0048-9697(00)00756-7

    Article  Google Scholar 

  • Pilgrim KM, Huser BJ, Brezonik PL (2007) A method for comparative evaluation of whole-lake and inflow alum treatment. Water Res 41:1215–1224. doi:10.1016/j.watres.2006.12.025

    Article  Google Scholar 

  • Pote DH, Daniel TC, Sharpley AN, Moore PA, Edwards DR, Nichols DJ (1996) Relating extractable soil phosphorus to phosphorus losses in runoff. Soil Sci Soc Am J 60:855–859

    Google Scholar 

  • Pote DH, Daniel TC, Nichols DJ, Sharpley AN, Moore PA, Miller DM et al (1999) Relationship between phosphorus levels in three utisols and phosphorus concentrations in runoff. J Environ Qual 28:170–175

    Google Scholar 

  • Psenner R, Puckso R (1988) Phosphorus fractionation: advantages and limits of the method for the study of sediment P origins and interactions. Arch Hydrobiol Biol Erg Limnol 30:43–59

    Google Scholar 

  • Reynolds CS (1984) The ecology of freshwater phytoplankton (Cambridge studies in ecology). Cambridge University Press, Cambridge

    Google Scholar 

  • Reynolds CS (2006) The ecology of phytoplankton. Cambridge University Press, Cambridge

    Google Scholar 

  • Reynolds CS, Glaister MS (1993) Spatial and temporal changes in phytoplankton abundance in the upper and middle reaches of the River Severn. Arch Hydrobiol Suppl 101 Large Rivers 9:1–22

    Google Scholar 

  • Schindler DW (2006) Recent advances in the understanding and management of eutrophication. Limnol Oceanogr 51:356–363

    Google Scholar 

  • Sekely A, Mulla DJ, Bauer DW (2002) Streambank slumping and its contribution to the phosphorus and suspended sediment loads of the Blue Earth River, Minnesota. J Soil Water Conserv 57:243–250

    Google Scholar 

  • Sharpley AN (1995) Dependence of runoff phosphorus on extractable soil phosphorus. J Environ Qual 24:920–926

    Google Scholar 

  • Sharpley AN, Smith SJ, Stewart BA, Mathers AC (1984) Forms of phosphorus in soil receiving cattle feedlot waste. J Environ Qual 13:211–215

    Google Scholar 

  • Sharpley AN, Troeger WW, Smith SJ (1991) The measurement of bioavailable phosphorus in agricultural runoff. J Environ Qual 20:235–238

    Google Scholar 

  • Smith VH (2006) Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment. Limnol Oceanogr 51:377–384

    Google Scholar 

  • Soballe DM, Kimmel BL (1987) A large-scale comparison of factors influencing phytoplankton abundance in rivers, lakes, and impoundments. Ecology 68:1943–1954. doi:10.2307/1939885

    Article  Google Scholar 

  • Søndergaard M, Jensen JP, Jeppesen E (2003) Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506–509:135–145. doi:10.1023/B:HYDR.0000008611.12704.dd

    Article  Google Scholar 

  • Statistical Analysis System (1994) SAS/STAT Users Guide Version 6, 4th edn. SAS Institute, Cary, NC

    Google Scholar 

  • Sylvan JB, Dortch Q, Nelson DM, Maier Brown AF, Morrison W, Ammerman JW (2006) Phosphorus limits phytoplankton growth on the Louisiana shelf during the period of hypoxia formation. Environ Sci Technol 40:7458–7553. doi:10.1021/es061417t

    Article  Google Scholar 

  • Torbert HA, Daniel TC, Lemunyon JL, Jones RM (2002) Relationship of soil test phosphorus and sampling depth to runoff phosphorus in calcareous and noncalcareous soils. J Environ Qual 31:1380–1387

    Google Scholar 

  • Turner RE, Rabalais NN, Justic D, Dortch Q (2003) Global patterns of dissolved N, P, and Si in large rivers. Biogeochemistry 64:297–317. doi:10.1023/A:1024960007569

    Article  Google Scholar 

  • Uusitalo R, Turtola E (2003) Determination of redox-sensitive phosphorus in field runoff without sediment preconcentration. J Environ Qual 32:70–77

    Google Scholar 

  • Uusitalo R, Turtola E, Puustinen M, Paasonen-Kivekäs M, Uusi-Kämppä J (2003) Contribution of particulate phosphorus to runoff phosphorus bioavailability. J Environ Qual 32:2007–2016

    Article  Google Scholar 

  • Van Nieuwenhuyse EE, Jones JR (1996) Phosphorus-chlorophyll relationship in temperate streams and its variation with stream catchment area. Can J Fish Aquat Sci 53:99–105. doi:10.1139/cjfas-53-1-99

    Article  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW et al (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Walker WW (1996) Simplified procedures for eutrophication assessment and prediction: user manual. Instruction Report W-96-2, September, 1996, US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, USA

  • Warner JC, Brunner GW, Wolfe BC, Piper SS (2008) HEC-RAS, river system applications guide. Version 4.0, March 2008. US Army Corps of Engineers Hydrologic Engineering Center. http://www.hec.usace.army.mil/software/hec-ras/

  • Waters TF (1977) The streams and Rivers of Minnesota. University of Minnesota Press, Minneapolis, MN

    Google Scholar 

  • Wauchope RD, McDowell LL (1984) Adsorption of phosphate, arsenate, methanocarsonate and cacodylate by lake and stream sediments. Comparisons with soils. J Environ Qual 13:499–504

    Google Scholar 

  • Zhang TQ, MacKenzie AF, Liang BC (1995) Long-term changes in Mehlich-3 extractable P and K in a sandy clay loam soil under continuous corn (Zea mays L.). Can J Soil Sci 75:361–367

    Google Scholar 

  • Zhang TQ, MacKenzie AF, Liang BC, Drury CF (2004) Soil test phosphorus and phosphorus fractions with long-term phosphorus addition and depletion. Soil Sci Soc Am J 68:519–528

    Google Scholar 

Download references

Acknowledgements

Metropolitan Council Environmental Services (MCES) of St. Paul, MN, and the US Army Engineer District, St. Paul (USAE St. Paul), are gratefully acknowledged for funding this research. We thank H. Eakin and L. Pommier of the Engineer Research and Development Center (ERDC) Eau Galle Aquatic Ecology Laboratory, K. Jensen, S. Schellhaass, and personnel of MCES for sampling, chemical analyses, and database compilation, A. Buesing (USAE St. Paul) and D. Smith (ERDC) for modeling travel time, and anonymous reviewers for helpful comments that improved this manuscript. Additional funding was provided by the Engineer Research and Development Center System-Wide Water Resources Program. Permission to publish this information was granted by the Chief of Engineers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William F. James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, W.F., Larson, C.E. Phosphorus dynamics and loading in the turbid Minnesota River (USA): controls and recycling potential. Biogeochemistry 90, 75–92 (2008). https://doi.org/10.1007/s10533-008-9232-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-008-9232-5

Keywords

Navigation