Skip to main content
Log in

The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Here we present the within-site, seasonal, and interannual variations of the carbon (δ13C) and nitrogen (δ15N) isotope ratios of leaves, wood, bark and litter from four sites in the Amazon region, Brazil. Samples were collected in Manaus (3° 06′07′′ S; 60°01′30′′ W), Ji-Paraná (10°53′07′′ S; 61°57′06′′ W), and Santarém (2°26′35′′ S; 54°42′30′′ W) with mean annual precipitation of 2207, 2040 and 1909 mm respectively. The overall average for all leaf samples was \(-32.3\pm2.5\permille\) for δ13C and \(+5.8\pm1.6\permille\) for δ15N (n=756). The leaf δ values at these sites were often but not always statistically distinct from each other. The δ13C values varied from \(-37.8\permille\) to \(-25.9\permille\). Pronounced differences in δ13C values occurred with height associated with differences in forest structure. The δ13C of leaf dry matter showed seasonal variations associated with the length of the dry season, despite the fact that total annual precipitation was similar among the studied sites. Leaf δ15N values ranged from \(+0.9\permille\) to a maximum value of \(+10.9\permille\), and the Santarém sites showed more enriched values than Manaus and Ji-Paraná sites. No seasonal variation was detected in the δ15N of leaves, but significant differences were observed among sites and with changes in canopy height. The isotope ratio data are consistent with our current understanding of the roles of light, water availability, and recycling of soil-respired CO2 influences on δ13C and consistent with our understanding that an open nitrogen cycle can lead to high δ15N values despite a significant number of legumes in the vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alder D., Silva J.N.M. (2000) An empirical cohort model for management of Terra Firme forests in Brazilian Amazon. Forest Ecol. Manage. 130: 141–157

    Article  Google Scholar 

  • Amundson R., Austin A.T., Schuur E.A.G., Yoo K., Matzek V., Kendall C., Uebersax A., Brenner D., Baisden W.T. (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem. Cycles 17(1): 1031, Doi: 10.1029/2002GB001903

    Article  ADS  CAS  Google Scholar 

  • Araujo A.C., Nobre A.D., Kruijt B., Culf A.D., Stefani P., Elbers J., Dallarosa R., Randow C., Manzi A.O., Valentini R., Gash J.H.C., Kabat P. (2002) Dual tower longterm study of carbon dioxide fluxes for a central Amazonian rain forest: The Manaus LBA site. J. Geophys. Res. Atmosph. 107(D20): 8090, doi: 10.1029/2001JD000676

    Article  ADS  Google Scholar 

  • Austin A., Vitousek P.M. (1998) Nutrient dynamics on a precipitation gradient. Oecologia 113: 519–529

    Article  Google Scholar 

  • Bassow S.L., Bazzaz F.A. (1997) Intra- and inter-specific variation in canopy photosynthesis in a mixed deciduous forest. Oecologia 13: 507–515

    Article  Google Scholar 

  • Berry S.C., Varney G.T., Flanagan L.B. (1997) Leaf δ13C in Pinus resinosa trees and understory plants: variation associated with light and CO2 gradients. Oecologia 13: 499–506

    Article  Google Scholar 

  • Bonal D., Barigah T.S., Graniers A., Guehl J.M. (2000a) Late stage canopy tree species with extremely low δ13C and hight stomatal sensitivity to seasonal soil drought in the tropical rain forest of French Guiana. Plant Cell Environ. 23: 445–459

    Article  Google Scholar 

  • Bonal D., Sabatier D., Montpied P., Tremeaux D., Guehl J.M. (2000b) Interspecific variability of δ13C among trees in rainforests of French Guiana: functional groups and canopy integration. Oecologia 124: 454–468

    Article  Google Scholar 

  • Broadmeadow M.S.J., Griffiths H. (1993) Carbon isotope discrimination and the coupling of CO2 fluxes within forest canopies. In: Ehleringer J.R., Hall A.E., Farquhar G.D. (eds) Stable Isotopes and Plant Carbon-Water Relations. Academic Press, San Diego, pp. 109–130

    Google Scholar 

  • Broadmeadow M.S.J., Griffiths H., Maxwell C., Borland A.M. (1992) The carbon isotope ratio of plant organic material reflects temporal and spatial variation in CO2 within tropical forest formations in Trinidad. Oecologia 89: 435–441

    Google Scholar 

  • Buchmann N., Guehl J.M., Barigah T.S., Ehleringer J.R. (1997) Interseasonal comparison of CO2 concentrations, isotopic composition and carbon dynamics in an Amazonian rainforest (French Guiana). Oecologia 110: 120–131

    Article  Google Scholar 

  • Bustamante M.M.C., Martinelli L.A., Silva D.A., Camargo P.B., Klink C.A., Domingues T.F., Santos R.V. (2004) δ13N natural abundance in woody plants and soils of central Brazilian savannas (cerrado). Ecol. Appl. 14(4): S200–S213 Suppl. S, AUG

    Google Scholar 

  • Camargo P.B., Trumbore S., Martinelli L.A., Davidson E., Nepstad D., Victoria R.L. (1999) Soil carbon dynamic in regroying forest in Eastern Amazonia. Global Change Biol. 5: 693–702

    Article  Google Scholar 

  • Cuevas E., Medina E. (1988) Nutrient dynamics within Amazonian forests. II fine root growth, nutrient availability and leaf litter decomposition. Oecologia 76: 222–235

    Article  Google Scholar 

  • Davidson E., Ishida F.Y. and Nepstad D.C. 2004. Effects of an Experimental Drought on Soil Emissions of Carbon Dioxide, Methane, Nitrous Oxide, and Nitric Oxide in a Moist Tropical Forest. Global Change Biol. v. 10

  • Donovan L.A., Ehleringer J.R. (1992) Contrasting water-use patterns among size and life-history classes of a semi-arid shrub. Funct. Ecol. 6: 482–488

    Article  Google Scholar 

  • Ehleringer J.R., Monson R.K. (1993) Evolutionary and ecological aspects of photosynthetic pathway variation. Ann. Rev. Ecol. Systemat. 24: 411–439

    Article  Google Scholar 

  • Ehleringer J.R., Bowling D.R., Flanagan L., Fessender J., Helliker B., Martinelli L.A., Ometto J.P.H.B. (2002) Stable isotopes and carbon cycle in forests and grasslands. Plant Biol. 4: 181–189

    Article  Google Scholar 

  • Ehleringer J.R., Field C.B., Lin Z.F., Kuo C.Y. (1986) Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline. Oecologia 70: 520–526

    Article  Google Scholar 

  • Ehleringer J.R., Buchmann N., Flanagan L.B. (2000) Carbon isotope ratios in belowground carbon cycle processes. Ecol. Appl. 10: 412–422

    Google Scholar 

  • Evans R.D., Ehleringer J.R. (1993) A break in the nitrogen cycle in aridlands? Evidence from δ13N of soils. Oecologia 94: 314–317

    Article  Google Scholar 

  • Evans R.D. (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends plant science 6(3): 121–126

    Article  CAS  ADS  Google Scholar 

  • Farquhar G.D., Ehleringer J.R., Hubick K.T. (1989) Carbon isotope discrimination and photosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40: 503–537

    Article  CAS  Google Scholar 

  • Farquhar G.D., O’Leary M.H., Berry J.A. (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9: 121–137

    Article  CAS  Google Scholar 

  • Fessenden J.E., Ehleringer J.R. (2002) Age dependent variations in the δ13C of ecosystem respiration across a coniferous forest chronosequence in the Pacific Northwest. Tree Physiol. 22: 159–167

    PubMed  CAS  Google Scholar 

  • Field C.B., Behrenfeld M.J., Randerson J., Falkowski (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237–240

    Article  PubMed  CAS  ADS  Google Scholar 

  • Fisch G., Marengo J.M., Nobre C.A. (1998) Uma revisão geral sobre o clima na Amazônia. Acta Amazonica 28(2): 101–126

    Google Scholar 

  • Gash J.H.C., Huntingford C., Marengo J.A., Betts R.A., Cox P.M., Fisch G., Fu R., Gandu A.W., Harris P.P., Machado L.A.T., von Randow C., Silva Dias M.A. (2004) Amazonian climate: results and future research. Theor. Appl. Climatol. 78: 187–193, LBA Special Issue

    ADS  Google Scholar 

  • Gebauer G., Schulze E.D. (1991) Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelgebirge, NE Bavaria. Oecologia 87: 198–207

    Article  Google Scholar 

  • Gehring C. (2003) The Role of Biological Nitrogen Fixation in Secondary and Primary Forests of Central Amazonia Doctoral Dissertation. Faculty of Agriculture Rheinische Friedrich-Wilhelm-Universität Bonn, Germany

    Google Scholar 

  • Goulden M.L., Miller S.D., Rocha H.R., Menton M.C., Freitas H.C., Figueira A.M.S., Souza C.A.D. (2004) Diel and seasonal patterns of tropical forest CO2 exchange. Ecol. Appl. 14: S42–S54

    Google Scholar 

  • Grace J., Lloyd J., McIntyre J., Miranda A.C., Meir P., Miranda H.S., Moncrieff J., Massheder J., Wright I., Gash J. (1995b) Fluxes of carbon dioxide and water vapor over an undisturbed tropical forest in south-west Amazonia. Global Change Biol. 1: 1–12

    Article  Google Scholar 

  • Grace J., Lloyd J., McIntyre J., Miranda A.C., Meir P., Miranda H.S., Nobre C., Moncrieff J., Massheder J., Malhi Y., Wright I., Gash J. (1995a) Carbon dioxide uptake by an undisturbed tropical rain forest in Southwest Amazonia, 1992–1993. Science 270: 778–780

    CAS  ADS  Google Scholar 

  • Grace J., Malhi Y., Lloyd J., McIntyre J., Miranda A.C., Meir P., Miranda H.S. (1996) The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest. Global Change Biol. 2: 208–217

    Article  Google Scholar 

  • Guehl J.M., Domenach A.M., Bereau M., Barigah T.S., Casabianca H., Ferhi A., Garbaye J. (1998) Functional diversity in an Amazonian rainforest of French Guyana: a dual isotope approach (δ13N and δ13C). Oecologia 116(3): 316–330, SEP

    Article  Google Scholar 

  • Guehl J.M., Domenach A.M., Bereau M., Barigah T.S., Casabianca H., Ferhi A., Garbaye J. (1998) Functional diversity in an Amazonian rainforest of French Guyana. A dual isotope approach (δ13N and δ13C). Oecologia 116: 316–330

    Article  Google Scholar 

  • Handley L., Austin A., Robinson D., Scrimgeour C., Raven J., Heaton T., Schmidt S., Stewart G. (1999) The 15-N natural abundance (δ13N) of ecosystem samples reflects measures of water availability, Aust. J. Plant Phys. 26: 185–199

    Article  Google Scholar 

  • Higuchi N., Santos J., Ribeiro R.J., Minette L., Biot Y. (1998) Biomassa da parte aérea da vegetação da floresta tropical úmida de terra-firme da Amazônia Brasileira. Acta Amazônica 28: 153–166

    Google Scholar 

  • Hodnett M.G., Oyama M.D., Tomazella J., Marques Filho A.O. (1996) Comparisons of long term soil water storage behavior under pasture and forest in three areas of Amazonia. In: Gash J.H.C., Nobre C.A., Roberts J.M., Victoria R.L. (eds) Amazonian Deflorestation and Climate. John Wiley & Sons, Chichester, U.K, pp. 79–100

    Google Scholar 

  • Högberg P., Johannisson C. (1993) δ13N abundance of forests is correlated with losses of nitrogen. Plant Soil 157: 147–150

    Google Scholar 

  • Högberg P. (1990) 15N natural abundance as a possible marker of the ectomycorrhizal habit of trees in mixed African woodlands. New Phytol. 115: 483–486

    Article  Google Scholar 

  • Hogberg P. (1997) 15N natural abundance in soil-plant systems. New Phytol 137: 179–203

    Article  Google Scholar 

  • Jackson P.C., Meinzer F.C., Goldstein G., Holbrook N.M., Cavelier J., Rada F. (1993) Environmental and physiological influences on carbon isotope composition of gap and understorey plants in a lowland tropical forest. In: Ehleringer J.R., Hall A.E., Farquhar G.D. (eds) Stable Isotopes and Plant Carbon–Water Relations. Academic Press, San Diego, pp. 131–140

    Google Scholar 

  • Kapos V., Ganade G., Matsui E., Victoria R.L. (1993) δ13C as an indicator of edge effects in tropical rain forest reserves. J. Ecol. 81: 425–432

    Article  Google Scholar 

  • Kruijt B., Lloyd J., Grace J., McIntyre J., Farquhar G.D., Miranda A.C., McCracken P. (1996) Sources and sinks of CO2 in Rondonian tropical forest, inferred from concentrations and turbulence along a vertical gradient. In: Gash J.H.C., Nobre C.A., Roberts J.M., Victoria R.L. (eds) Amazonian Deflorestation and Climate. John Wiley & Sons, Chichester, U.K, pp. 331–351

    Google Scholar 

  • Leffler Aj., Enquist Bj (2002) Carbon isotope composition of tree leaves from Guanacaste, Costa Rica: comparison Across tropical forests and tree life history. J. Trop. Ecol. 18: 151–159

    Article  Google Scholar 

  • Lloyd J., Grace J., Miranda A.C., Meir P., Wong S.C., Miranda H.S., Wright I.R., Gash J.H.C., McIntyre J. (1996) A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties. Plant, Cell Environ. 18: 1129–1145

    Article  Google Scholar 

  • Luizão R.C.C., Luizão F.J., Paiva R.Q., Monteiro T.F., Sousa L.S., Kruijt B. (2004) Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest. Global Change Biol. 10: 592–600, doi: 10.1111/j.1529-8817.2003.00757.x

    Article  Google Scholar 

  • Malhi Y., Baldocchi D.D., Jarvis P.G. (1999) The carbon balance of tropical, temperate and boreal forests. Plant, Cell Environ. 22: 715–740

    Article  CAS  Google Scholar 

  • Marengo J.A., Hastenrath S. (1993) Case studies of climatic events in Amazon basin. J. Climate 6(4): 617–627

    Article  ADS  Google Scholar 

  • Marengo J.A. (1992) Interannual variability of surface climate in the Amazon basin. J. Climatol. 12(8): 853–863

    Google Scholar 

  • Martinelli L.A., Almeida S., Brown I.F., Moreira M.Z., Victoria R.L., Sternberg L.S.L., Ferreira C.A.C., Thomas W.W. (1998) Stable carbon isotope ratio of tree leaves, boles and fine litter in a tropical forest in Rondônia, Brazil. Oecologia 114: 170–179

    Article  Google Scholar 

  • Martinelli L.A., Piccolo M.C., Townsend A.R., Vitousek P.M., Cuevas E., Mcdowell W., Robertson G.P., Santos O.C., Treseder K. (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46(1–3): 45–65

    CAS  Google Scholar 

  • McKey D. (1994) Legumes and nitrogen: the evolutionary ecology of a nitrogen-demanding lifestyle. In: Sprent J.I., McKey D. (eds) Advances in Legume Systematics 5: The Nitrogen Factor. Royal Botanic Gardens, Kew, UK, pp. 221–228

    Google Scholar 

  • Medina E., Minchin P. (1980) Stratification of δ13C values of leaves in Amazonian rainforests. Oecologia 45: 355–378

    Article  Google Scholar 

  • Medina E., Sternberg L., Cuevas E. (1991) Vertical stratification of δC values in closed and natural plantation forests in the Luquillo mountains, Puerto Rico. Oecologia 87: 369–372

    Article  Google Scholar 

  • Meints V.W., Boone L.V., Kurtz L.T. (1975) Natural 15N abundance in soil, leaves, and grain as influenced by long term additions of fertilizer N at several rates. J. Environ. Qual. 4: 486–90

    Article  CAS  Google Scholar 

  • Merwe N.J. van der, Medina E. (1989) Photosynthesis and 13C/12C ratios in Amazonian rain forests. Geochim. Cosmochim. Acta 53: 1091–1094

    Article  ADS  Google Scholar 

  • Miller S.D., Goulden M.L., Menton M.C., Rocha H.R., Freitas H.C., Figueira A.M.S., Sousa C.A.D. (2004) Biometric and Micrometeorological Measurements of Tropical Forest Carbon Balance. Ecol. Appl. 14(4): S114–S126, Supplement

    Google Scholar 

  • Moreira de Souza F.M., da Silva M.F., de Faria S.M. (1992) Occurrence of nodulation in legume species in the Amazon region of Brazil. New Phytol. 121: 563–570

    Article  Google Scholar 

  • Natelhoffer K.J., Fry B. (1988). Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci. Soc. Am. J. 52:1633–1640

    Article  CAS  Google Scholar 

  • Obregon G., Nobre C.A. (1990). Principal component analysis of precipitation fields over Amazon river basin. Climanálise 5(7): 35–46

    Google Scholar 

  • Ometto J.P.H.B., Flanagan L., Martinelli L.A., Moreira M.Z., Higuchi N., Ehleringer J.R. (2002) Carbon isotope discrimination in forest and pasture ecosystems of the Amazon Basin, Brazil. Global Biogeochem. Cycles 16:1109

    Article  ADS  CAS  Google Scholar 

  • Panek J.A. (1996) Correlations between stable carbon-isotope abundance and hydraulic conductivity in Douglas-fir across a climate gradient in Oregon, USA. Tree Physiol. 16(9):747–55

    PubMed  CAS  Google Scholar 

  • Robinson D. (2001). δ15N as an integrator of the nitrogen cycle. Trends Ecol. Evol. 16:153–162

    Article  PubMed  Google Scholar 

  • Roggy J.C., Preâvost M.F., Garbaye J., Domenach A.M. (1999a) Nitrogen cycling in the tropical rain forest of French Guiana: comparison of two sites with contrasting soil types using d15N. J. Trop. Ecol. 15:1–22

    Article  Google Scholar 

  • Roggy J.C., Prevost M.F., Gourbiere F., Casabianca H., Garbaye J., Domenach A.M. (1999b) Leaf natural “δN abundance and total Nconcentration as potential indicators of plant N nutrition in legumes and pioneer species in a rain forest of French Guiana. Oecologia 120: 171–182

    Article  Google Scholar 

  • Saleska S.R., Miller S.D., Matross D.M., Goulden M.L., Wofsy S.C., da Roacha H.R., de Camargo P.B., Crill P., Daube B.C., de Freitas H.C., Hutyra L., Keller M., Kirchoff V., Menton M., Munger J.W., Pyle E.H., Rice A.H. & Silva H. (2003) Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554–1557

    Article  PubMed  CAS  ADS  Google Scholar 

  • Schimel D.S. (1995) Terrestrial ecosystems and the carbon-cycle. Global Change Biol. 1: 77–91

    Article  Google Scholar 

  • Souza L.A.G., de Silva M.F., da und Moreira F.W. (1994). Capacidade de nodulação de cem Leguminosas da Amazônia. Acta Amazônica 24(1/2): 9–19

    Google Scholar 

  • Sprent J.I. (1995) Legume trees and shrubs in the tropics: N2 fixation in perspective. Soil Biol. Biochem. 7: 401–407

    Article  Google Scholar 

  • Sternberg L.S.L., Mulkey S.S., Wright S.J. (1989) Ecological interpretation of leaf isotope ratios: influence of respired carbon dioxide. Ecology 70: 1317–1324

    Article  Google Scholar 

  • Stewart G.R., Joly A.C., Smirnoff N. (1992) Partitioning of inorganic nitrogen assimilation between roots and shoots of cerrado and forest trees of contrasting plant communities of South East Brazil. Oecologia 91:511–517

    Article  Google Scholar 

  • Sylvester-Bradley R., Oliveira L.A., Podestá Filho J.A., St. John T.V. (1980) Nodulation of legumes, nitrogenase activity of roots and occurrence of nitrogen-fixing Azospirillum spp. in representative soils of Central Amazonia. Agro-Ecosystems 6:249–66

    Article  Google Scholar 

  • Telles E.C.C., de Camargo P.B., Martinelli L.A., Trumbore S.E., da Costa E.S., Santos J., Higuchi N. and Oliveira Jr R.O. 2003. Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia. Global Biogeochem. Cycles 17-1040 doi: 10.1029/2002GB001953

  • Vieira S., Camargo P.B., Selhorst D., Silva R., Hutyra L., Chambers J.Q., Brown I.F., Higuchi N., Santos J., Wofsy S.C., Trumbore S.E., Martinelli L.A. (2004) Forest structure and carbon dynamics in Amazonian tropical rain forests. Oecologia 140: 468–479 doi: 10.1007/s00442-004-1598-z

    Article  PubMed  Google Scholar 

  • Vitousek P.M, Cassman K., Cleveland C., Crews T., Field C.B., Grimm N.B., Howarth R.W., Marino R., Martinelli L., Rastetter E.B., Sprent J.I. (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57/58: 1–45

    Google Scholar 

  • Walcroft A.S., Silvester W.B., Grace J.C., Carson S.D., Waring R.H. (1996) Effects of branch length on carbon isotope discrimination in Pinus radiata. Tree Physiol. 16: 281–286

    PubMed  Google Scholar 

  • Walcroft A.S., Whitehead D., Silvester W.B., Kelliher F.M. (1997) Determination of photosynthetic model parameters in response to temperature and nitrogen concentration in Pinus radiata D. Don. Plant, Cell Environ. 20: 1338–1348

    Article  CAS  Google Scholar 

  • Yoneyama T., Muraoka T., Murakami T., Boonkerd N. (1993) Natural abundance of 15N in tropical plants with emphasis on tree legumes. Plant Soil 153: 295–304

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from NASA to project CD-02 in the LBA Terrestrial Ecology Program. We would like to thank the technical support from Dr. Plínio B. de Camargo and Dr. Marcelo Z. Moreira (CENA/USP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean P. H. B. Ometto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ometto, J.P.H.B., Ehleringer, J.R., Domingues, T.F. et al. The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 79, 251–274 (2006). https://doi.org/10.1007/s10533-006-9008-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-006-9008-8

Key words

Navigation