Skip to main content
Log in

Enhanced decolourization of Direct Red-80 dye by the white rot fungus Phanerochaete chrysosporium employing sequential design of experiments

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Decolourization of Direct Red 80 (DR-80) by the white rot fungus Phanerochaete chrysosporium MTCC 787 was investigated employing sequential design of experiments. Media components for growing the white rot fungus were first screened using Plackett-Burman design and then optimized using response surface methodology (RSM), which resulted in enhancement in the efficiency of dye removal by the fungus. For determining the effect of media constituents on the dye removal, both percent dye decolourization and specific dye removal due to maximum enzyme activity were chosen as the responses from the experiments, and the media constituents glucose, veratryl alcohol, KH2PO4, CaCl2 and MgSO4 were screened to be the most effective with P values less than 0.05. Central composite design (CCD) followed by RSM in the optimization study revealed the following optimum combinations of the screened media constituents: glucose, 11.9 g l−1; veratryl alcohol, 12.03 mM; KH2PO4, 23.08 g l−1; CaCl2, 2.4 g l−1; MgSO4, 10.47 g l−1. At the optimum settings of the media constituents, complete dye decolourization (100% removal efficiency) and a maximum specific dye removal due to lignin peroxidase enzyme of 0.24 mg U−1 by the white rot fungus were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aleboyeh N, Daneshvar N, Kasiri MB (2008) Optimization of C.I. Acid Red 14 azo dye removal by electrocoagulation batch process with response surface methodology. Chem Eng Process 47:827–832

    CAS  Google Scholar 

  • Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19:771–783

    Article  CAS  PubMed  Google Scholar 

  • Bakshi DK, Gupta KG, Sharma P (1999) Enhanced bio decolourization of synthetic textile dye effluent by Phanerochaete chrysosporium under improved culture conditions. World J Microbiol Biotechnol 15:507–509

    Article  CAS  Google Scholar 

  • Bumpus JA, Brock BJ (1988) Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium. World J Microbiol Biotechnol 54:1143–1150

    CAS  Google Scholar 

  • Chang JS, Lin YC (2000) Fed-batch bioreactor strategies for microbial decolorization of azo dye using a Pseudomonas luteola strain. Biotechnol Prog 16:979–985

    Article  CAS  PubMed  Google Scholar 

  • Chen HC (1994) Response surface methodology for optimizing citric acid fermentation by Aspergillus foetiudes. Process Biochem 29:399–405

    Article  CAS  Google Scholar 

  • Cripps C, Bumpus JA, Austin SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1114–1118

    CAS  PubMed  Google Scholar 

  • Dias AA, Bezerra MR, Lemos MP, Pereira NA (2003) In vivo and laccase catalysed decolourization of xenobiotic azo dyes by a basidiomycetous fungus: characterization of its ligninolytic system. World J Microbiol Biotechnol 19:969–975

    Article  CAS  Google Scholar 

  • Haider MA, Pakshirajan K (2007) Screening and optimization of media constituents for enhancing lipolytic activity by a soil microorganism using statistically designed experiments. Appl Biochem Biotechnol 141:377–390

    Article  CAS  PubMed  Google Scholar 

  • Hassan MM, Hawkyard CJ (2002) Ferral-catalyzed ozonation of aqueous dyes in a bubble column reactor. Catal Commun 3:281–286

    Article  CAS  Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Lett 13:125–135

    Article  CAS  Google Scholar 

  • Keharia H, Madamwar D (2003) Bioremediation concepts for treatment of dye containing waste water: a review. Indian J Exp Biol 41:1068–1075

    CAS  PubMed  Google Scholar 

  • Kirk TK, Tien M, Kersten PJ, Kalyanaraman N, Hammel KE, Farrels R (1990) Lignin peroxidase from fungi: Phanerochaete chrysosporium. Meth Enzymol 188:159–171

    Article  CAS  Google Scholar 

  • Korbahti BK, Rauf MA (2008) Application of response surface analysis to the photolytic degradation of Basic Red 2 dye. Chem Eng J 138:166–171

    Article  CAS  Google Scholar 

  • Lin SH, Chen ML (1997) Treatment of textile wastewater by chemical methods for reuse. Water Res 31:868–876

    Article  CAS  Google Scholar 

  • Linko S, Haapala R (1993) A critical study of lignin peroxidase activity assay by veratryl alcohol oxidation. Biotechnol Tech 7:75–80

    Article  CAS  Google Scholar 

  • Mahmoodi NM, Arami M, Limaee NY, Tabrizi NS (2005) Decolourization and aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst. Chem Eng J 112:191–196

    Article  CAS  Google Scholar 

  • Mechichi T, Mhiri N, Sayadi S (2006) Brilliant Blue R decolorization by the laccase from Trametes trogii. Chemosphere 64:998–1005

    Article  CAS  PubMed  Google Scholar 

  • Mohana S, Shrivastava S, Divecha J, Madamwar D (2008) Response surface methodology for optimization of medium for decolourization of textile dye Direct Black 22 by a novel bacterial consortium. Bioresour Technol 99:562–569

    Article  CAS  PubMed  Google Scholar 

  • Moller P, Wallin H (2000) Genotoxic hazards of azo pigments and other colorants related to 1-phenylazo-2-hydroxynaphthalene. Mutat Res 462:13–30

    Article  CAS  PubMed  Google Scholar 

  • Montgomery DC (1991) Design and analysis of experiments, 3rd edn. Wiley, New York

    Google Scholar 

  • Nagarajan G, Annadurai G (1999) Biodegradation of reactive dye (Verofix Red) by the white rot fungus Phanerochaete chrysosporium using Box-Behnken experimental design. Bioprocess Biosyst Eng 20:435–440

    CAS  Google Scholar 

  • Nigam P, Banat IM, Singh D, Marchant R (1996) Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochem 31:435–442

    Article  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  PubMed  Google Scholar 

  • Purama RK, Goyal A (2008) Screening and optimization of nutritional factors for higher dextransucrase production by Leuconostoc mesenteroides NRRL B-640 using statistical approach. Bioresour Technol 99:7108–7114

    Article  CAS  PubMed  Google Scholar 

  • Radha KV, Regupathi I, Arunagiri A, Murugesan T (2005) Decolourization studies of synthetic dyes using Phanerochaete chrysosporium and their kinetics. Process Biochem 40:3337–3345

    Article  CAS  Google Scholar 

  • Ravikumar K, Pakshirajan K, Swaminathan T, Balu K (2005) Optimization of batch process parameters using response surface methodology for dye removal by a novel adsorbent. Chem Eng J 105:131–138

    Article  CAS  Google Scholar 

  • Reddy LVA, We Y-J, Yun J-S, Ryu H-W (2008) Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett-Burman and response surface methodological approaches. Bioresour Technol 99:2242–2249

    Article  CAS  PubMed  Google Scholar 

  • Sayadi S, Ellouz R (1995) Roles of lignin peroxidase and manganese peroxidase from Phanerochaete chrysosporium in the decolourization of olive mill wastewaters. Appl Environ Microbiol 61:1098–1103

    CAS  PubMed  Google Scholar 

  • Sheth NT, Dave SR (2009) Optimisation for enhanced decolourization and degradation of Reactive Red BS C.I. 111 by Pseudomonas aeruginosa NGKCTS. Biodegradation 20:827–836

    Article  CAS  PubMed  Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80

    Article  CAS  PubMed  Google Scholar 

  • Tanyildizi MS, Ozer D, Elibol M (2005) Optimization of a-amylase production by Bacillus sp. using response surface methodology. Process Biochem 40:2291–2296

    Article  CAS  Google Scholar 

  • Tien M, Kirk TK (1983) Lignin peroxidase of Phanerochaete chrysosporium. Science 221:661

    Article  CAS  PubMed  Google Scholar 

  • Tir M, Moulai-Mostefa N (2008) Optimization of oil removal from oily wastewater by electrocoagulation using response surface method. J Hazard Mater 158:107–115

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the Council of Scientific and Industrial Research (CSIR), India, under Scheme No. 38(1171)/07/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannan Pakshirajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S., Pakshirajan, K. & Daverey, A. Enhanced decolourization of Direct Red-80 dye by the white rot fungus Phanerochaete chrysosporium employing sequential design of experiments. Biodegradation 21, 501–511 (2010). https://doi.org/10.1007/s10532-009-9319-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-009-9319-2

Keywords

Navigation