Skip to main content

Advertisement

Log in

Influence and value of different water regimes on avian species richness in arid inland Australia

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Riparian habitats in arid landscapes are recognised for their structurally diverse vegetation and diverse bird species assemblages. In the extensive semi-arid and arid centre of Australia, riparian woodland habitats are impacted by pastoral land-use which may negatively influence vegetation structure and avian species composition. However, pastoralism has promoted the establishment of artificial water bodies, so that additional riparian vegetation may occur in the landscape. In this study, we surveyed the importance of different water regimes (i.e. artificial lakes, natural waterholes, desert sites) together with their associated vegetation on avian species richness in north-western New South Wales, Australia. Our results show that bird species richness was highest at water locations, in particular at artificial lakes. Avian species richness was negatively associated with distance to water bodies, both in desert vegetation types and in the riparian vegetation type along dry creeks. Moreover, riparian habitats supported larger avian assemblages and especially those of sedentary bird species compared to the surrounding shrub-steppe landscape. This indicates that artificial water bodies may be of significance for arid zone bird species and might gain in importance with changing water availabilities due to climatic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Australian Bureau of Meterology (2006) Climate data for Fowlers Gap Station. Online available at: http://www.bom.gov.au/climate/cdo/about/supply.shtml

  • Carini D, Hughes JM, Bunn SE (2006) The role of waterholes as ‘refugia’ in sustaining genetic diversity and variation of two freshwater species in dryland river systems (Western Queensland, Australia). Freshw Biol 51:1434–1446

    Article  Google Scholar 

  • Chan K (2001) Partial migration in Australian land birds: a review. Emu 101:281–292

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2001) Primer v5: user manual/tutorial. Primer-E Ltd, Plymouth

    Google Scholar 

  • Cockburn A (2003) Cooperative breeding in oscine passerines: does sociality inhibit speciation? Proc R Soc Lond B Biol Sci 207:2207–2214

    Article  Google Scholar 

  • Cody ML (1981) Habitat selection in birds: the roles of vegetation structure, competitors, and productivity. Bioscience 31:107–113

    Article  Google Scholar 

  • Cunningham GM, Mulham WE, Milthorpe PL, Leight JH (1981) Plants of western new South Wales. NSW Government Printing Office

  • Dean WRJ (1997) The distribution and biology of nomadic birds in the Karoo, South Africa. J Biogeogr 24:769–779

    Article  Google Scholar 

  • Dean WRJ (2004) Adaptations of desert organisms – desert birds. Springer, Berlin

    Google Scholar 

  • Dean WRJ, Milton SJ (2001) Responses of birds to rainfall and seed abundance in the southern Karoo, South Africa. J Arid Environ 47:101–121

    Article  Google Scholar 

  • Fisher CD, Lindgren E, Dawson WR (1972) Drinking patterns and behaviour of Australian desert birds in relation to their ecology and abundance. Condor 74:111–136

    Article  Google Scholar 

  • Freudenberger DO, Noble J (1997) Consumption, regulation and off-take: a landscape perspective on pastoralism. In: Ludwig JA, Tongway DJ, Freudenberger DO, Noble JC, Hodgkinson KC (eds) Landscape ecology function and management, principles from Australia’s rangelands. CISRO, Collingwood, pp 35–47

    Google Scholar 

  • Hawkins BA, Porter EE, Diniz-Filho JAF (2003a) Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology 84:1608–1623

    Article  Google Scholar 

  • Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan J-F, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003b) Energy, water and broad-scale geographic patterns of species richness. Ecology 84:3105–3117

    Article  Google Scholar 

  • Hawkins BA, Diniz-Filho JAF, Soeller SA (2005) Water links the historical and contemporary components of the Australian bird diversity gradient. J Biogeogr 32:1035–1042

    Article  Google Scholar 

  • Hughes L (2003) Climate change and Australia: trends, projections and impacts. Aust Ecol 28:423–443

    Article  Google Scholar 

  • James CD, Landsberg J, Morton SR (1999) Provision of watering points in the Australian arid zone: a review of effects on biota. J Arid Environ 41:87–121

    Article  Google Scholar 

  • Jansen A, Robertson AI (2001) Riparian bird communities in relation to land management practices in floodplain woodlands of south-eastern Australia. Biol Conserv 100:173–185

    Article  Google Scholar 

  • Kingsford RT, Wong PS, Braithwaite LW, Maher MT (1999) Waterbird abundance in eastern Australia, 1983–92. Wildl Res 26:351–366

    Article  Google Scholar 

  • Kingston MB (2005) Riparian and upslope influences on the regional avifauna of the semi-arid Mulga lands of South West Queensland. Dissertation, Griffith University, Australia

  • Knopf FL, Samson FB (1994) Scale perspectives on avian diversity in western riparian ecosystems. Conserv Biol 8:669–676

    Article  Google Scholar 

  • Kodric-Brown A, Brown JH (1993) Highly structured fish communities in Australian desert springs. Ecology 74:1847–1855

    Article  Google Scholar 

  • Landsberg J, James CD, Morton SR, Hobbs TJ, Stol J, Drew A, Tongway H (1997) The effects of artificial sources of water on rangeland biodiversity. Final report to the Biodiversity Convention and Strategy Section of the Biodiversity Group, Environment, Australia

  • Mabbutt JA (1973) Historical background of Fowlers Gap Station. In: Mabbutt JA, Sullivan ME (eds) Lands of Fowlers Gap Station New South Wales. Fowlers Gap Arid Zone Research Station, Research Series no. 3, University of New South Wales, Sydney, pp 1–23

  • MacArthur RH (1964) Environmental factors affecting bird species diversity. Am Nat 98:387–397

    Article  Google Scholar 

  • MacArthur RH, MacArthur JW (1961) On bird species diversity. Ecology 42:594–598

    Article  Google Scholar 

  • MacArthur RH, Recher H, Cody M (1966) On the relation between habitat selection and species diversity. Am Nat 100:319–332

    Article  Google Scholar 

  • Mac Nally R, Parkinson A, Horrocks G, Conole L, Tzaros C (2001) Relationship between terrestrial vertebrate diversity, abundance and availability of coarse woody debris on south-eastern Australian floodplains. Biol Conserv 99:191–205

    Article  Google Scholar 

  • Martin TG, McIntyre S (2007) Impacts of livestock grazing and tree clearing on birds of woodland and riparian habitats. Conserv Biol 21:504–514

    Article  PubMed  Google Scholar 

  • Martin TG, Possingham HP (2005) Predicting the impacts of livestock grazing on birds using foraging height data. J Appl Ecol 42:400–408

    Article  Google Scholar 

  • Martin TG, McIntyre S, Catterall CP, Possingham HP (2006) Is landscape context important for riparian conservation? Birds in grassy woodland. Biol Conserv 127:201–214

    Article  Google Scholar 

  • Mendelsohn MB, Boarman WI, Fisher RN, Hathaway SA (2007) Diversity of terrestrial avifauna in response to distance form the shoreline of the Salton Sea. J Arid Environ 68:574–587

    Article  Google Scholar 

  • Moore PD, Chapman SB (1986) Methods in plant ecology. Blackwell, Oxford

    Google Scholar 

  • Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New York

    Google Scholar 

  • Nicholls N (2006) Detecting and attributing Australian climate change: a review. Aust Meteorol Mag 55:199–211

    Google Scholar 

  • Palmer GC, Bennett AF (2006) Riparian zones provide for distinct bird assemblages in forest mosaics of south-east Australia. Biol Conserv 130:447–457

    Article  Google Scholar 

  • Robbins CS (1981) Effect of time of day on bird activity. Stud Avian Biol 6:275–286

    Google Scholar 

  • Robertson AI, Rowling RW (2000) Effects of livestock on riparian zone vegetation in an Australian dryland river. Regul Rivers: Res Manag 16:527–541

    Article  Google Scholar 

  • Root TJ, Price JT, Hall KR, Schneider ST, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  PubMed  CAS  Google Scholar 

  • Roshier DA, Robertson AI, Kingsford RT, Green DG (2001) Continental-scale interactions with temporary resources may explain the paradox of large populations of desert waterbirds in Australia. Landsc Ecol 16:547–556

    Article  Google Scholar 

  • Roshier DA, Robertson AI, Kingsford RT (2002) Responses of water birds to flooding in an arid region of Australia and implications for conservation. Biol Conserv 106:39–411

    Article  Google Scholar 

  • Saab V (1999) Importance of spatial scale to habitat use by breeding birds in riparian forests: a hierarchical analysis. Ecol Appl 9:135–151

    Article  Google Scholar 

  • Sánchez-Zapata JA, Anadón JD, Carrete M, Giménez A, Navarro J, Villacorta C, Botella F (2005) Breeding water birds in relation to artificial pond attributes: implications for the design of irrigation facilities. Biodivers Conserv 14:1627–1639

    Article  Google Scholar 

  • Schodde R (1982) Origin, adaptation and evolution of birds in arid Australia. In: Barker WR, Greenslade PJM (eds) Evolution of the flora and fauna of arid Australia. Peacock, Frewville, pp 191–224

    Google Scholar 

  • Shurcliff KS (1980) Vegetation and bird community characteristics in an Australian arid mountain range. J Arid Environ 3:331–348

    Google Scholar 

  • Simmons RE, Bernard P, Dean WRJ, Midgley GF, Thuiller W, Hughes G (2004) Climate change and birds: perspectives and prospects from southern Africa. Ostrich 75:295–308

    Google Scholar 

  • Simpson K, Day N (2004) Field guide to the birds of Australia. Penguin Group (Australia), Camberwell

  • Skagen SK, Melcher CP, Howe WH, Knopf FL (1998) Comparative use of riparian corridors and oases by migrating birds in Southeast Arizona. Conserv Biol 12:896–909

    Article  Google Scholar 

  • Smyth AK, James CD (2004) Characteristics of Australia’s rangelands and key design issues for monitoring biodiveristy. Aust Ecol 29:3–15

    Article  Google Scholar 

  • Szaro RC, Jakle MD (1985) Avian use of a desert riparian island and its adjacent scrub habitat. Condor 87:511–519

    Article  Google Scholar 

  • van Rensburg BJ, Chown SL, Gaston KJ (2002) Species richness, environmental correlates, and spatial scale: a test using South African birds. Am Nat 159:566–577

    Article  PubMed  Google Scholar 

  • Vickery JA, Tallowin JR, Feber RE, Asteraki EJ, Atkinson PW, Fuller RJ, Brown VK (2001) The management of lowland natural grassland in Britain: effects of agricultural practices on birds and their food resources. J Appl Ecol 38:647–664

    Article  Google Scholar 

  • Wakelin-King GA, Webb JA (2007) Threshold-dominated fluvial styles in an arid-zone mud-aggregate river: the uplands of Fowlers Creek, Australia. Geomorphology 85:114–127

    Article  Google Scholar 

  • Willson MF (1974) Avian community organization and habitat structure. Ecology 55:1017–1029

    Article  Google Scholar 

  • Woinarski JCZ, Brock C, Armstrong M, Hempel C, Cheal D, Brennan K (2000) Bird distribution in riparian vegetation in the extensive natural landscape of Australia’s tropical savanna: a broad-scale survey and analysis of a distributional data base. J Biogeogr 27:843–868

    Article  Google Scholar 

Download references

Acknowledgements

We thank David Croft for technical support on Fowlers Gap Station and Margarethe Koop for help in the field. Tomas Pärt, Katharine Bowgen, Matt Low and an anonymous reviewer gave valuable comments on the manuscript. This study was funded by the Swiss National Science Foundation to M. G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Anja Schneider.

Appendix 1

Appendix 1

Relative abundance of bird species recorded during point counts at the three different types of water regime

Common name

Scientific name

Lakes

Waterholes

Desert sites

Mean

SE

Mean

SE

Mean

SE

Spiny-cheeked honeyeater

Acanthagenys rufogularis

3.50

0.54

3.50

0.31

3.67

0.34

Chestnut-rumped thornbill

Acanthiza uropygialis

0.50

0.20

0.33

0.14

Collared sparrowhawk

Accipiter cirrhocephalus

0.33

0.14

0.67

0.07

Brown goshawk

Accipiter fasciatus

0.17

0.07

Chestnut teala

Anas castanea

0.33

0.14

Grey teala

Anas gracilis

50.67

4.85

3.17

0.07

Australasian shovelera

Anas rhynchotis

1.00

0.24

Pacific black ducka

Anas superciliosa

0.83

0.34

Dartera

Anhinga melanogaster

1.00

0.41

Australian pipit

Anthus australis

0.33

0.14

1.67

0.41

Southern whiteface

Aphelocephala leucopsis

2.50

0.82

Wedge-tailed eagle

Aquila audax

0.33

0.14

0.33

0.07

Black-faced woodswallow

Artamus cinereus

0.67

0.27

2.33

0.48

White-breasted woodswallow

Artamus leucorhynchus

1.50

0.20

0.50

0.12

White-browed woodswallow

Arthamus superciliosus

0.83

0.34

Hardheada

Aythya australis

2.83

0.60

Australian ringneck

Barnardius zonarius barnardi

5.50

0.94

6.67

1.14

Musk ducka

Biziura lobata

2.17

0.88

Little corella

Cacatua sanguinea

19.83

5.96

26.00

4.28

1.67

0.49

Sharp-tailed sandpipera

Calidris acuminata

0.67

0.27

Pied honeyeater

Certhionyx variegantus

0.50

0.20

Horsfield’s bronze-cuckoo

Chalcites basalis

0.17

0.07

Australian wood ducka

Chenonetta jubata

1.33

0.07

1.67

0.36

White-backed swallow

Cheramoeca leucosternus

1.00

0.20

1.67

0.41

Whiskered terna

Chlidonias hybridus

0.50

0.20

1.67

0.68

Rufous songlark

Cinclorhamphus mathewsi

0.17

0.07

Rock doveb

Columbia livia

0.17

0.07

Black-faced cuckoo-shrike

Coracina novaehollandiae

0.50

0.12

2.00

0.20

Australian raven

Corvus coronoides

5.50

0.35

6.00

0.12

2.17

0.38

Pied butcherbird

Cracticus nigrogularis

0.50

0.20

0.67

0.18

Grey butcherbird

Cracticus torquatus

2.00

0.12

2.33

0.45

0.17

0.07

Mistletoebird

Dicaeum hirundinaceum

0.50

0.12

2.00

0.24

Emu

Dromaius novaehollandiae

2.17

0.48

White-faced herona

Egretta novaehollandiae

0.67

0.14

0.50

0.12

Black-fronted dotterela

Elseyornis melanops

8.67

1.36

Galah

Eolophus roseicapilla

29.17

4.73

27.33

4.02

3.17

1.29

Red-kneed dotterela

Erythogonys cinctus

0.33

0.14

Nankeen kestrel

Falco cenchroides

1.00

0.12

0.50

0.12

0.83

0.25

Australian hobby

Falco longipennis

0.17

0.07

Peregrine falcon

Falco peregrinus

0.33

0.07

Black falcon

Falco subniger

0.17

0.07

Eurasian coota

Fulica atra

85.00

34.39

Black-tailed native-hena

Gallinula ventralis

0.83

0.25

Peaceful dove

Geopelia placida

0.33

0.07

4.17

1.41

Magpie-lark

Grallina cyanoleuca

8.17

0.98

3.00

0.42

Australian magpie

Gymnorhina tibicen

8.00

0.82

3.33

0.14

2.83

0.60

Little eagle

Hieraaetus morphnoides

0.17

0.07

Welcome swallow

Hirundo neoxena

14.83

1.00

1.83

0.30

White-plumed honeyeater

Lichenostomus penicillatus

9.50

1.98

8.83

1.11

Singing honeyeater

Lichenostomus virescens

3.00

0.92

1.00

0.12

1.00

0.24

Pink-eared ducka

Malacorhynchus membranaceus

9.33

1.94

Variegated fairy-wren

Malurus lamberti

1.50

0.42

0.33

0.14

White-winged fairy-wren

Malurus leucopterus

0.33

0.14

3.50

0.54

Yellow-throated miner

Manorina flavigula

1.00

0.24

Hooded robin

Melanodryas cucullata

0.67

0.27

Rainbow bee-eater

Merops ornatus

0.67

0.27

3.50

1.33

Jacky winter

Microeca fascinans

0.17

0.07

0.83

0.34

Black kite

Milvus migrans

0.33

0.14

0.50

0.00

0.17

0.07

Restless flycatcher

Myiagra inquieta

0.83

0.34

0.17

0.07

Blue bonnet

Northiella haematogaster

3.33

1.36

Cockatiel

Nymphicus hollandicus

0.33

0.14

Crested pigeon

Ocyphaps lophotes

9.50

1.24

5.83

0.34

2.67

0.58

Rufous whistler

Pachycephala rufiventris

0.17

0.07

Striated pradalote

Pardalotus striatus

0.17

0.07

Tree martin

Petrochelidon nigricans

52.50

2.28

47.50

1.43

4.00

1.25

Little pied cormoranta

Phalacrocorax melanoleucos

6.00

2.45

 

Little black cormoranta

Phalacrocorax sulcirostris

2.33

0.95

Common bronzewing

Phaps chalcopter

0.33

0.14

Yellow-billed spoonbilla

Platalea flavipes

1.00

0.41

Hoary-headed grebea

Poliocephalus poliocephalus

2.17

0.53

Chestnut-crowned babbler

Pomatostomus ruficeps

8.17

3.33

0.50

0.20

Mulga parrot

Psephotus varius

1.17

0.30

2.00

0.20

Chirruping wedgebill

Psophodes cristatus

2.00

0.72

0.67

0.14

1.83

0.25

Willie wagtail

Rhipidura leucophrys

7.00

0.42

4.17

0.45

0.50

0.20

Weebill

Smicrornis brevirostris

2.00

0.42

Freckled ducka

Stictonetta naevosa

1.33

0.54

Apostlebird

Struthidea cinerea

3.17

0.92

5.83

1.26

Australasian grebea

Tachybaptus novaehollandiae

3.67

0.95

Zebra finch

Taeniopygia guttata

0.17

0.07

Red-backed kingfisher

Todiramphus pyrrhopygia

0.17

0.07

0.33

0.14

Sacred kingfisher

Todiramphus sanctus

0.33

0.14

Common greenshanka

Tringa nebularia

0.17

0.07

  1. Water bird species are distinguished from terrestrial species by a, non-native introduced species by b behind their common name

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, N.A., Griesser, M. Influence and value of different water regimes on avian species richness in arid inland Australia. Biodivers Conserv 18, 457–471 (2009). https://doi.org/10.1007/s10531-008-9501-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-008-9501-6

Keywords

Navigation