Skip to main content
Log in

Differences in Characteristics of Reserve Network Selection Using Population Data Versus Habitat Surrogates

  • ORIGINAL PAPER
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The use of species data versus environmental surrogates used in lieu of species data in systematic reserve site selection is still highly debated. We analyse in a case study whether and how the results of reserve network selection are affected by the use of species data versus habitat surrogates (habitat models) for qualitative (presence/absence) and quantitative (population size/habitat quality) information. In a model region, the post-mining landscape south of Leipzig/Germany, we used iterative algorithms to select a network for 29 animal target species from a basic set of 127 sites. The network results differ markedly for the two information types: depending on the representation goal, 18–45% of the selected sites chosen in response to one information type do not appear in the results for the other type. Given the availability of quantitative and hence deeper information, evaluation rules can be used to filter out the best habitats and the largest populations. In our model study, 0–40% less suitable areas were selected when instead of quantitative details only qualitative data were used. In view of various advantages and limitations of the two information types, we propose improving the methodological approach to the selection of networks for animal species by combining different information types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altmoos M (1999a) Networks of priority areas — a methodological framework for planning and optimisation of area systems for nature conservation. Natur Landschaftsplan 31:357–367 (in German with English title and summary)

    Google Scholar 

  • Altmoos M (1999b) Systeme von Vorranggebieten für den Tierarten-, Biotop- und Prozeßschutz. UFZ-Ber 18/1999:1–252

  • Araújo MB, Williams PH (2000) Selecting areas for species persistence using occurrence data. Biol Conserv 96:331–345

    Article  Google Scholar 

  • Araújo MB, Humphries CJ, Densham PJ, Lampinen R, Hagemeijer WJM, Mitchell-Jones AJ, Gasc JP (2001) Would environmental diversity be a good surrogate for species diversity? Ecography 24:103–110

    Article  Google Scholar 

  • Belbin I (1993) Environmental representativeness: regional partitioning and reserve selection. Biol Cons 66:223–230

    Article  Google Scholar 

  • Bibby CJ (1998) Selecting areas for conservation. In: Sutherland WJ (ed) Conservation science and action. Blackwell, Oxford, pp 176–201

    Chapter  Google Scholar 

  • Brändle M, Durka W, Altmoos M (2000) Diversity of surface dwelling beetle assemblages in open-cast lignite mines in Central Germany. Biodivers Conserv 9:1297–1311

    Article  Google Scholar 

  • Brooks T, da Fonseca GAB, Rodrigues ASL (2004a) Protected areas and species. Conserv Biol 18:616–618

    Article  Google Scholar 

  • Brooks T, da Fonseca GAB, Rodrigues ASL (2004b) Species, data, and conservation planning. Conserv Biol 18:1682–1688

    Article  Google Scholar 

  • Cabeza M, Moilanen A (2003) Site-selection algorithms and habitat loss. Conserv Biol 17:1402–1413

    Article  Google Scholar 

  • Caughley G (1980) Analysis of vertebrate populations. John Wiley, Chichester New York & Brisbane

    Google Scholar 

  • Church RL, Stoms DM, Davis FW (1996) Reserve selection as a maximal covering location problem. Biol Conserv 76:105–112

    Article  Google Scholar 

  • Cowling RM, Knight AT, Faith DP, Ferrier S, Lombard AT, Driver A, Rouget M, Maze K, Desmet PG (2004) Nature conservation requires more than a passion for species. Conserv Biol 18:1674–1676

    Article  Google Scholar 

  • Fahrig L (2001) How much habitat is enough? Biol Conserv 100:65–74

    Article  Google Scholar 

  • Fairbanks DHK, Reyers B, Van Jaarsfeld AS (2001) Species and environment representation: selecting reserves for the retention of avian diversity in KwaZulu-Natal, South Africa. Biol Conserv 98:365–379

    Article  Google Scholar 

  • Ferris R, Humphrey JW (1999) A review of potential biodiversity indicators for application in British forests. Forestry 72:313–328

    Article  Google Scholar 

  • Frank K, Berger U (1996) Metapopulation und Biotopverbund – eine kritische Betrachtung aus der Sicht der Modellierung. Zeitschrift Ökol Natur 5:151–160

    Google Scholar 

  • Freitag S, Van Jaarsfeld AS, Biggs HC (1997) Ranking priority biodiversity areas: an iterative conservation value-based approach. Biological Conservation 82:263–272

    Article  Google Scholar 

  • Freitag S, Nicholls AO, Van Jaarsveld AS (1998) Dealing with established reserve networks and incomplete distribution data sets in conservation planning. S Afr J Sci 94:79–86

    Google Scholar 

  • Gaston KJ, Rodrigues ASL (2003) Reserve selection in regions with poor biological data. Conserv Biol 17:188–195

    Article  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. University Press, Oxford, pp 313

    Google Scholar 

  • Henle K, Vogel B, Köhler G, Settele J (1999) Erfassung und Analyse von Populationsparametern bei Tieren. In: Amler K, Bahl A, Henle K, Kaule G, Poschlod P, Settele J (eds) Populationsbiologie in der Naturschutzpraxis. Isolation, Flächenbedarf und Biotopansprüche von Pflanzen und Tieren. E. Ulmer, Stuttgart, pp 94–112

  • Henle K, Sarre S, Wiegand K (2004) The role of density regulation in extinction processes and population viability analysis. Biodivers Conserv 13:9–52

    Article  Google Scholar 

  • Higgins JV, Ricketts TH, Parrish JD, Dinerstein E, Powell G, Palminteri S, Hoekstra JM, Morrison J, Tomasek A, Adams J (2004) Beyond Noah: saving species is not enough. Conserv Biol 18:1672–1673

    Article  Google Scholar 

  • Jongman RHG (1995) Nature conservation planning in Europe: developing ecological networks. Landsc Urban Plan 32:169–183

    Article  Google Scholar 

  • Kiester AR, Scott JM, Csuti B, Noss RF, Butterfield B, Sahr K, White D (1996) Conservation prioritization using GAP data. Conserv Biol 10:1332–1342

    Article  Google Scholar 

  • Kleyer M, Kratz R, Lutze G, Schröder B (2000) Habitatmodelle für Tierarten: Entwicklung, Methoden und Perspektiven für die Anwendung. Zeitschrift Ökol Natur 8:177–194

    Google Scholar 

  • Kliskey AD, Lofroth EC, Thompson WA, Brown S, Schreier H (1999) Simulating and evaluating alternative resource-use strategies using GIS-based habitat suitability indices. Landsc Urban Plan 45:163–175

    Article  Google Scholar 

  • Lombard AT, Cowling RM, Pressey RL, Rebelo AG (2003) Effectiveness of land classes as surrogates for species in conservation planning for the Cape Floristic Region. Biol Conserv 112:45–62

    Article  Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253

    Article  CAS  PubMed  Google Scholar 

  • Margules CR, Nicholls AO, Pressey RL (1988) Selecting networks of reserves to maximise biological biodiversity. Biol Conserv 43:63–76

    Article  Google Scholar 

  • Margules CR, Cresswell ID, Nicholls AO (1994) A scientific basis for establishing networks of protected areas. Syst Conserv Eval 50:327–350

    Google Scholar 

  • McArdle BH (1990) When are rare species not there? Oikos 57:276–277

    Article  Google Scholar 

  • Meggs JM, Munks SA, Corkrey R, Richards K (2004) Development and evaluation of predictive habitat models to assist the conservation planning of a threatened lucanid beetle, Hoplogonus simsoni, in north-east Tasmania. Biol Conserv 118:501–511

    Article  Google Scholar 

  • Molnar J, Marvier M, Kareiva P (2004) The sum is greater than the parts. Conserv Biol 18:1670–1671

    Article  Google Scholar 

  • Morrison ML, Marcot BG, Mannan RW (1998) Wildlife—habitat relationships—concepts and applications. The University of Wisconsin Press, Madison, pp 435

    Google Scholar 

  • Pearce J, Ferrier S, Scotts D (2001) An evaluation of the predictive performance of distributional models for flora and fauna in north-east New South Wales. J Environ Manage 62:171–184

    Article  CAS  PubMed  Google Scholar 

  • Polasky S, Solow AR (2001) The value of information in reserve site selection. Biodivers Conserv 10:1051–1058

    Article  Google Scholar 

  • Polasky S, Camm JD, Solow AR, Csuti B, White D, Ding R (2000) Choosing reserve networks with incomplete species information. Biol Conserv 94:1–10

    Article  Google Scholar 

  • Posillico M, Meriggi A, Pagnin E, Lovari S, Russo L (2004) A habitat model for brown bear conservation and land use planning in the central Apennines. Biol Conserv 118:141–150

    Article  Google Scholar 

  • Pressey RL (2004) Conservation planning and biodiversity: assembling the best data for the job. Conserv Biol 18:1677–1681

    Article  Google Scholar 

  • Pressey RL, Nicholls AO (1989) Efficiency in conservation evaluation: scoring versus iterative approaches. Biol Conserv 50:199–218

    Article  Google Scholar 

  • Pressey RL, Possingham HP, Margules CR (1996) Optimality in reserve selection algorithms: when does it matter how much? Biol Conserv 76:259–267

    Article  Google Scholar 

  • Pulliam HR, Danielson BJ (1991) Sources, sinks, and habitat selection: a landscape perspective on population dynamics. Am Nat 137:50–66

    Article  Google Scholar 

  • Pulliam HR (1996) Sources and sinks: empirical evidence and population consequences. In: Rhodes OE, Chesser RK, Smith MH (eds) Population dynamics in space and time. The University of Chicago Press, Chicago, London, pp 45–69

    Google Scholar 

  • Reich M, Grimm V (1996) Das Metapopulationskonzept in Ökologie und Naturschutz: Eine kritische Bestandsaufnahme. Zeitschrift Ökol Natur 5:123–139

    Google Scholar 

  • Rodrigues ASL, Gaston KJ, Gregory R (2000a) Using presence–absence data to establish reserve selection procedures which are robust to temporal species turnover. Proc R Soc Lond., Ser B 267:1–6

    Article  Google Scholar 

  • Rodrigues ASL, Gaston KJ, Gregory R (2000b) Robustness of reserve selection procedures under temporal species turnover. Proc R Soc Lond., Ser B 267:49–55

    Article  CAS  Google Scholar 

  • Sætersdal M, Gjerde I, Blom HH, Ihlen PG, Myrseth EW, Pommeresche R, Skartveit J, Solhoy T, Aas O (2004) Vascular plants as a surrogate species group in complementary site selection for bryophytes, macrolichens, spiders, carabids, staphylinids, snails, and wood living polypore fungi in a northern forest. Biol Conserv 115:21–31

    Article  Google Scholar 

  • Schulz F, Wiegleb G (2000) Development options of natural habitats in a post-mining landscape. Land Degrad Develop 11:99–110

    Article  Google Scholar 

  • Scott JM, Csuti B, Jacobi JD, Estes JE (1987) Species richness: A geographic approach to protecting future biological diversity. BioScience 37:782–788

    Article  Google Scholar 

  • Settele J, Feldmann R, Henle K, Kockelke K, Poethke H-J (1998) Populationsgrößenschätzung bei Tieren. Ausgewählte Verfahren für den Einsatz in Populationsökologie und Naturschutz. Natur Landschaft 30:174–181

    Google Scholar 

  • Shafer CL (1999) National park and reserve planning to protect biological diversity: some basic elements. Landsc Urban Plan 44:123–153

    Article  Google Scholar 

  • Shafer CL (1987) Minimum viable populations: coping with uncertainty. In: Soulé ME (eds) Viable populations for conservation. Cambridge University Press, Cambridge, pp 69–86

    Google Scholar 

  • Shafer CL (2001) Inter-reserve distance. Biol Conserv 100:215–227

    Article  Google Scholar 

  • Suchant R, Baritz R, Braunisch V (2003) Wildlife habitat analysis – a multidimensional habitat management model. J Nat conserv 10:253–268

    Article  Google Scholar 

  • Underhill LG (1994) Optimal and suboptimal reserve selection algorithms. Biol Conserv 70:85–87

    Article  Google Scholar 

  • Ward TJ, Vanderklift MA, Nicholls AO, Kenchington RA (1999) Selecting marine reserves using habitats and species assemblages as surrogates for biological diversity. Ecol Appl 9:691–698

    Article  Google Scholar 

  • Wessels KJ, Freitag S, Van Jaarsfeld AS (1999) The use of land facets as biodiversity surrogates during reserve selection at a local scale. Biol Conserv 89:21–38

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Altmoos.

Appendix

Appendix

Data matrix for sites, which were selected at least once. The standardised abundance of occurrence (direct information; birds: breeding pairs, amphibians: maximum number of calling males; grasshoppers and butterflies: maximum number of observations along transects of 200 m length) and the size of a habitat with at least minimum suitability (indirect information, in hectares) are given. For the five examples of target species, instead of standardised abundance figures the exact population sizes were included (direct information); in addition habitat suitability (the sum of all habitat suitability indices within a site) is reported as the most detailed level of information.

Site-Code

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

Direct infor„ma„tion:

Tar„get spe„cies oc„cu„rence [abun„dances]

Ini„tial suc„ces„sion stages

Bird Ripa„ria ripa„ria

            

10

  

20

      

15

10

  

Bird An„thus cam„pes„tris

   

3

5

2

 

5

   

8

5

  

20

    

5

  

3

 

8

Bird Oe„nan„the oe„nan„the

  

2

1

2

1

3

2

   

3

2

  

6

    

2

 

1

3

 

2

Bird Cha„rad„ri„us du„bi„us

1

3

 

3

 

2

 

4

   

2

   

5

 

1

1

 

3

 

1

2

1

5

Bird Emb„er„iza cal„an„dra

 

5

2

2

2

2

     

2

2

 

1

7

1

 

1

       

Bird Mota„cil„la flav„a

3

7

2

3

2

  

4

 

2

 

3

   

25

3

2

1

    

5

  

Grass„hop„per Oe„di„poda cae„rules„cens

   

1

2

2

     

3

3

  

4

       

2

 

2

Grass„hop„per Sphing„on„o„tus caeru„lans

   

1

4

1

     

2

1

  

3

    

2

    

1

Tiger bee„tle Ci„cin„del„a hyb„ri„da

   

2

  

6

    

6

7

  

10

    

3

  

3

 

3

Grass„land with wood„land ini„tials

Myrm„ele„on„i„dae

   

4

5

4

4

    

3

9

       

2

     

Bird La„nius col„lu„rio

2

2

 

1

1

1

2

 

1

1

1

2

3

1

1

8

2

1

 

2

   

4

2

3

Bird La„nius ex„cub„i„tor

   

1

 

1

     

2

3

   

1

         

Bird Syl„via nis„o„ria

1

  

1

     

1

1

    

1

1

1

        

Bird Saxi„co„la rub„e„tra

3

10

 

3

         

2

2

25

2

      

4

3

10

Bird Saxi„co„la tor„qu„at„a

 

5

          

5

 

4

10

       

2

1

7

Grass„hop„per Phane„rop„ter„a fal„cata

    

1

2

     

1

   

2

       

3

 

3

But„ter„fly Hip„par„chi„a he„rmi„one (L.)

            

2

             

Wet„lands

Amphib„ian: green toad Bufo vir„i„dis

5

 

20

2

   

20

 

5

     

70

5

 

15

 

10

 

5

5

 

10

Am„bhi„bian: natt„er„jack toad Bufo cal„a„mi„ta

5

 

50

      

5

        

5

 

10

  

5

 

10

Amphib„ian: spade„foot toad Pe„lo„bates fus„cus

50

10

 

20

    

20

50

20

 

1

  

200

50

      

50

 

20

Amphib„ian: Euro„pean tree frog Hyla ar„bo„rea

30

  

50

    

5

20

  

1

  

100

50

     

3

50

  

Bird Cir„cus ae„rug„i„no„sus

1

1

 

1

 

1

  

1

1

1

 

1

  

1

1

      

1

 

1

Bird Bo„tau„rus stel„lar„is

                

1

         

Bird Ac„ro„ceph„a„lus ar„und„in„ac„eus

2

3

 

1

     

1

     

4

2

         

Bird Ac„ro„ceph„a„lus scir„pac„eus

5

7

 

4

 

2

  

1

4

2

 

3

  

15

7

2

     

4

1

4

Drag„on„fly Sympe„trum pede„monta„num

   

1

 

2

     

1

   

5

2

1

     

5

1

4

Drag„on„fly Orthe„trum brun„ne„um

               

2

    

2

 

1

2

 

1

Drag„on„fly Orthe„thrum coe„rules„cens

   

1

           

2

1

         

Drag„on„fly Is„chn„ura pumi„lio

   

1

 

2

     

2

   

4

       

4

2

2

Indi„rect infor„ma„tion:

Area of tar„get spe„cies hab„i„tat [ha] (suit„abil„ity)

Ini„tial suc„ces„sion stages

Bird Ripa„ria ripa„ria

  

2

 

1

 

2

     

5

  

2

 

2

   

1

1

1

  

Bird An„thus cam„pes„tris

 

3

5

2

5

2

3

5

   

5

3

 

1

50

    

5

5

2

2

 

5

Bird Oe„nan„the oe„nan„the

  

2

1

5

5

3

3

   

3

5

 

1

20

    

3

10

3

1

 

5

Bird Cha„rad„ri„us du„bi„us

1

5

5

2

3

2

2

3

   

3

3

  

5

 

1

1

 

5

5

1

1

1

5

Bird Emb„er„iza cal„an„dra

 

1

5

1

5

5

 

2

   

10

5

 

1

10

1

 

1

 

5

5

2

  

2

Bird Mota„cil„la flav„a

3

30

1

1

1

5

5

20

 

1

 

5

20

 

5

50

1

1

1

    

3

 

2

Grass„hop„per Oe„di„poda cae„rules„cens

  

5

3

5

5

3

1

   

10

10

  

50

    

10

5

2

1

 

5

Grass„hop„per Sphing„on„o„tus caeru„lans

  

10

2

7

2

1

    

5

3

  

20

    

30

20

2

  

5

Bee„tle Ci„cin„del„a hyb„ri„da

  

4

1

5

1

3

1

   

10

10

  

5

 

1

1

 

15

10

2

1

 

3

Grass„land with young wood„land

Myrm„ele„on„i„dae

  

1

1

 

1

5

    

3

5

  

2

 

1

 

2

3

    

5

Bird La„nius col„lu„rio

3

5

3

3

 

25

5

5

 

3

2

5

15

3

3

40

5

  

3

   

5

5

10

Bird La„nius ex„cub„i„tor

     

20

      

25

  

30

   

20

     

30

Bird Syl„via nis„o„ria

2

        

2

1

 

2

 

1

5

1

         

Bird Saxi„co„la rub„e„tra

5

3

    

3

10

 

5

   

1

5

15

5

      

5

1

5

Bird Saxi„co„la tor„qu„at„a

 

2

5

 

5

3

3

3

   

5

5

 

5

10

       

3

1

3

Grass„hop„per Phane„rop„ter„a fal„cate

 

5

3

1

1

10

10

    

5

5

 

5

10

     

2

 

3

 

3

But„ter„fly Hip„par„chi„a he„rmi„one (L.)

     

3

10

     

20

      

2

     

4

Wet„lands

Amphib„ian: green toad Bufo vir„i„dis

3

2

5

1

1

  

1

1

2

 

3

1

1

 

10

3

 

5

 

5

 

1

1

 

3

Am„bhi„bian: natt„er„jack toad Bufo cal„a„mi„ta

3

2

5

1

1

  

1

1

2

 

3

1

1

 

10

3

 

2

 

5

 

1

1

 

3

Amphib„ian: spade„foot toad Pe„lo„bates fus„cus

10

5

 

5

    

3

10

1

 

1

  

10

5

 

1

    

5

  

Amphib„ian: Euro„pean tree frog Hyla ar„bo„rea

10

5

 

5

    

3

10

5

 

1

  

7

15

1

    

1

10

  

Bird Cir„cus ae„rug„i„no„sus

25

100

   

5

  

1

10

     

7

15

      

20

 

20

Bird Bo„tau„rus stel„lar„is

25

50

       

10

     

7

15

      

10

 

20

Bird Ac„ro„ceph„a„lus ar„und„in„ac„eus

15

5

 

3

     

5

5

    

5

15

      

10

 

10

Bird Ac„ro„ceph„a„lus scir„pac„eus

15

5

 

1

 

3

  

3

5

5

 

1

  

5

15

1

     

10

1

10

Drag„on„fly Sympe„trum pe„dem„on„a„tum

   

1

 

1

   

2

 

1

2

  

10

5

2

  

3

 

1

10

2

5

Drag„on„fly Orthe„trum brun„ne„um

  

2

            

5

2

 

1

 

2

 

1

3

1

3

Drag„on„fly Orthe„thrum coe„rules„cens

  

2

  

1

     

1

   

5

2

 

1

 

2

 

1

3

1

3

Drag„on„fly Is„chn„ura pumi„lio

1

 

2

  

1

     

1

   

5

5

 

1

 

2

 

1

3

1

3

Indi„rect infor„ma„tion:

Exact hab„i„tat suit„abil„ity (sums)

Grass„hop„per Oe„di„poda cae„rules„cens

0

0

19.3

0

25

15

36

28

0

0

0

25

55

0.7

0

92

0

0

0

0

2

0

8.9

10

6

10

Grass„hop„per Sphing„on„o„tus caeru„lans

0

0

15

0

50

10

20

1

0

0

0

17.5

25

0

0

82

0

0

0

0

1

0

36

12

87

8

Amphib„ian Bufo vir„i„dis

5

4

25

7

0

2

0.5

30

1

3

0.6

0.8

2

0

0

71

1.2

0.9

36

0

5

1

7

12

0

3

Amphib„ian Pe„lo„bates fus„cus

7

2

0

10

0

15

0

2

15

25

20

0

0

0

0

82

42

0

0

0

6.6

0

0

0

0

0.1

Amphib„ian Hyla ar„bo„rea

20

85

0.1

15

0

4

0

2

4

20

5

1

2

0

0

73.2

80

0

0.5

0

20

0.3

0.2.

10

0

3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altmoos, M., Henle, K. Differences in Characteristics of Reserve Network Selection Using Population Data Versus Habitat Surrogates. Biodivers Conserv 16, 113–135 (2007). https://doi.org/10.1007/s10531-006-9014-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-006-9014-0

Keywords

Navigation