Skip to main content

Advertisement

Log in

Assessing the extent and the environmental drivers of Eucalyptus globulus wildling establishment in Portugal: results from a countrywide survey

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Tasmanian blue gum (Eucalyptus globulus) has been increasingly used in forestry outside its native range, and is nowadays one of the most important pulpwood species in the world. E. globulus has great economic importance in many countries, and in Portugal it has recently become the most widespread tree species. However, there is also an increasing concern about the potential ability of eucalypts to naturally establish from seed (wildling establishment), because of negative ecological and economic impacts this could cause. The natural establishment of this fast-growing exotic species may have undesirable consequences, but little is known about its distribution, or which are the factors influencing its occurrence. In order to investigate these issues, we characterized wildling occurrence and abundance along 3111 roadside transects adjacent to eucalypt plantations distributed throughout continental Portugal. Eucalypt wildlings were found in 60 % of the sampled transects and across all natural regions, with densities ranging from 0 to 10,000 plants ha−1 (mean = 277 plants ha−1). The potential influence of environmental variables on wildling establishment from plantations was assessed using boosted regression trees. The abundance of wildlings was found to be primarily affected by precipitation and distance from the sea (used as a surrogate of thermal amplitude), although topography, frost occurrence and soil type also played a significant role. Plant density peaked at around 1500 mm of annual precipitation and it decreased with both decreasing and increasing precipitation, reaching the lowest values below 800 mm and above 2400 mm. Eucalypt wildlings were also more abundant in areas with milder temperatures, namely closer to the sea (with lower thermal amplitude) and with lower number of frost days. Finally, plant density also seemed to be favoured in areas with intermediate elevation, higher slope and with certain soil types (namely Cambisols and Podzols). Knowing the regions with higher wildling density and understanding the factors influencing plant establishment may help managers to establish and prioritize eventual control plans in regions with higher probability of recruitment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abella S, Spencer J, Hoines J et al (2009) Assessing an exotic plant surveying program in the Mojave Desert, Clark County, Nevada, USA. Environ Monit Assess 151:221–230

    Article  PubMed  Google Scholar 

  • AFN (2010) FloreStat—Aplicação para consulta dos resultados do 5° Inventário Florestal Nacional. Autoridade Florestal Nacional, http://www.icnf.pt/portal/florestas/ifn/ifn5/rel-fin. Accessed 2 Dec 2014

  • Águas A, Ferreira A, Maia P et al (2014) Natural establishment of Eucalyptus globulus Labill. in burnt stands in Portugal. For Ecol Manage 323:47–56

    Article  Google Scholar 

  • Almeida JD, Freitas H (2006) Exotic flora of continental Portugal—a reassesment. Bot Complut 30:117–130

    Google Scholar 

  • Alves AM, Pereira JS, Silva JMN (2007) A introdução e a expansão do eucalipto em Portugal. In: Alves AM, Pereira JS, Silva JMN (eds) O eucaliptal em Portugal. Impactes ambientais e investigação científica. ISAPress, Lisboa, pp 13–24

    Google Scholar 

  • Andreu J, Vilà M, Hulme P (2009) An assessment of stakeholder perceptions and management of noxious alien plants in Spain. Environ Manage 43:1244–1255

    Article  PubMed  Google Scholar 

  • APA (2013) Atlas Digital do Ambiente. Agência Portuguesa do Ambiente. http://www.apambiente.pt/index.php?ref=19&subref=174. Accessed 2 May 2014

  • Augustin NH, Mugglestone MA, Buckland ST (1996) An autologistic model for the spatial distribution of wildlife. J Appl Ecol 33:339–347

    Article  Google Scholar 

  • Becerra PI, Bustamante RO (2008) The effect of herbivory on seedling survival of the invasive exotic species Pinus radiata and Eucalyptus globulus in a Mediterranean ecosystem of Central Chile. For Ecol Manage 256:1573–1578

    Article  Google Scholar 

  • Bivand R, Piras G (2015) Comparing implementations of estimation methods for spatial econometrics. J Stat Softw 63:1–36

    Google Scholar 

  • BjØrnstad O, Falck W (2001) Nonparametric spatial covariance functions: estimation and testing. Environ Ecol Stat 8:53–70

    Article  Google Scholar 

  • Boland DJ, Brooker MIH, Chippendale GM et al (2006) Forest trees of Australia. CSIRO Publishing, Collingwood

    Google Scholar 

  • Booth TH (2012) Eucalypts and their potential for invasiveness particularly in frost-prone regions. International Journal of Forestry Research 2012:7

    Article  Google Scholar 

  • Borralho NMG, Almeida MH, Potts BM (2007) O melhoramento do eucalipto em Portugal. In: Eucaliptal em Portugal: Impactes Ambientais e Investigação Científica. ISA Press, Lisboa, pp. 61–110

  • Buston PM, Elith J (2011) Determinants of reproductive success in dominant pairs of clownfish: a boosted regression tree analysis. J Anim Ecol 80:528–538

    Article  PubMed  Google Scholar 

  • Cal-IPC (2006) California Invasive Plant Inventory. Cal-IPC Publication 2006-02. California Invasive Plant Council., Berkeley, CA. http://www.cal-ipc.org/ip/inventory/pdf/Inventory2006.pdf

  • Calviño-Cancela M, Rubido-Bará M (2013) Invasive potential of Eucalyptus globulus: seed dispersal, seedling recruitment and survival in habitats surrounding plantations. For Ecol Manage 305:129–137

    Article  Google Scholar 

  • Calviño-Cancela M, Rubido-Bará M, van Etten EJB (2012) Do eucalypt plantations provide habitat for native forest biodiversity? For Ecol Manage 270:153–162

    Article  Google Scholar 

  • Catry FX, Rego FC, Bugalho MN, et al. (2006) Effects of fire on tree survival and regeneration in a Mediterranean ecosystem. In: Viegas DX (ed) In: V international conference on forest fire research. Figueira da Foz, pp. CD Rom (6 pp.)

  • Catry F, Rego FX, Moreira F et al (2010) Post-fire tree mortality in mixed forests of central Portugal. For Ecol Manage 260:1184–1192

  • Catry FX, Moreira F, Tujeira R et al (2013) Post-fire survival and regeneration of Eucalyptus globulus in forest plantations in Portugal. For Ecol Manage 310:194–203

    Article  Google Scholar 

  • Crase B, Liedloff AC, Wintle BA (2012) A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography 35:879–888

    Article  Google Scholar 

  • Daehler CC, Denslow JS, Ansari S et al (2004) A risk-assessment system for screening out invasive pest plants from Hawaii and other Pacific Islands. Conserv Biol 18:360–368

    Article  Google Scholar 

  • De’ath G (2007) Boosted trees for ecological modeling and prediction. Ecology 88:243–251

    Article  PubMed  Google Scholar 

  • De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192

    Article  Google Scholar 

  • Doughty RW (2000) The Eucalyptus. A natural and commercial history of the gum tree. The Johns Hopkins University Press, London

    Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813

    Article  CAS  PubMed  Google Scholar 

  • ESRI (2012) ArcGIS 10.1. Environmental Systems Resource Institute, Redlands, California

  • Facelli JM, Williams R, Fricker S et al (1999) Establishment and growth of seedlings of Eucalyptus obliqua: interactive effects of litter, water, and pathogens. Aust J Ecol 24:484–494

    Article  Google Scholar 

  • FAO (1985) The ecological effects of Eucalyptus. FAO Forestry Paper 59. Food and Agriculture Organization of the United Nations, Rome

  • FAO (2001) Lecture notes on the major soils of the world. World Soil Resources Reports 94. Food and Agriculture Organization of the United Nations, Rome

  • FAO (2010) Global Forest Resources Assessment. FAO Forestry Paper 63. Food and Agriculture Organization of the United Nations, Rome

  • Farley KA, Jobbágy EG, Jackson RB (2005) Effects of afforestation on water yield: a global synthesis with implications for policy. Glob Change Biol 11:1565–1576

    Article  Google Scholar 

  • Florence RG (1996) Ecology and silviculture of eucalypt forests CSIRO Publishing, Collilgwood, Victoria

  • Fortin MJ, Dale M (2005) Spatial analysis. Cambridge University Press, Cambridge, A guide for ecologists

    Google Scholar 

  • Gassó N, Basnou C, Vilà M (2010) Predicting plant invaders in the Mediterranean through a weed risk assessment system. Biol Invasions 12:463–476

    Article  Google Scholar 

  • Gelbard JL, Belnap J (2003) Roads as conduits for exotic plant invasions in a semiarid landscape. Conserv Biol 17:420–432

    Article  Google Scholar 

  • Goes E (1962) Os eucaliptos em Portugal, ecologia cultura e produções. Direcção-Geral dos Serviços Florestais e Aquícolas, Lisboa

  • Goes E (1977) Os eucaliptos—ecologia, cultura produção e rentabilidade. Portucel, Lisboa

  • Gomes ARS, Kozlowski TT (1980) Effects of flooding on Eucalyptus camaldulensis and Eucalyptus globulus seedlings. Oecologia 46:139–142

    Article  Google Scholar 

  • Gordon DR, Flory SL, Cooper AL, et al. (2012) Assessing the invasion risk of Eucalyptus in the United States using the Australian Weed Risk Assessment. International Journal of Forestry Research 2012, Article ID 203768, p 7

  • Hastie T, Tibshirani R, Friedman JH (2001) The elements of statistical learning: data mining, inference, and prediction. Springer, New York

    Book  Google Scholar 

  • Hunter GC, Roux J, Wingfield BD et al (2004) Mycosphaerella species causing leaf disease in South African Eucalyptus plantations. Mycol Res 108:672–681

    Article  CAS  PubMed  Google Scholar 

  • ICNF (2013) IFN6—Áreas dos usos do solo e das espécies florestais de Portugal continental. Resultados preliminares, Instituto da Conservação da Natureza e das Florestas

    Google Scholar 

  • Jacobs MR (1979) Eucalypts for planting. FAO forestry series 11. Food and Agriculture Organization of the United Nations, Rome

  • Keane PJ, Kile GA, Podger FD, Brown BN (eds) (2000) Diseases and pathogens of eucalypts. CSIRO Publishing, Collingwood

  • Kirkpatrick JB (1975) Natural distribution of Eucalyptus globulus Labill. Aust Geogr 13:22–35

    Article  Google Scholar 

  • Kirkpatrick JB (1977) Eucalypt invasion in southern California. Aust Geogr 13:387–393

    Article  Google Scholar 

  • Koenig WD (1999) Spatial autocorrelation of ecological phenomena. Trends Ecol Evol 14:22–26

  • Larcombe M, Silva J, Vaillancourt R et al (2013) Assessing the invasive potential of Eucalyptus globulus in Australia: quantification of wildling establishment from plantations. Biol Invasions 15:2763–2781

    Article  Google Scholar 

  • Lazarides M, Cowley K, Hohnen P (1997) CSIRO handbook of Australian weeds. CSIRO Publishing, Collingwood

    Google Scholar 

  • Leathwick JR, Elith J, Francis MP et al (2006) Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Mar Ecol Prog Ser 321:267–281

    Article  Google Scholar 

  • Marchante H, Morais M, Freitas H et al (2014) Guia prático para a identificação de plantas invasoras em Portugal. Imprensa da Universidade de Coimbra, Coimbra

    Google Scholar 

  • METI, NASA (2011) ASTER Global Digital Elevation Model—GDEM V2. http://asterweb.jpl.nasa.gov/gdem.asp. Accessed 14 Jan 2014

  • Milgate AW, Yuan ZQ, Vaillancourt RE et al (2001) Mycosphaerella species occurring on Eucalyptus globulus and Eucalyptus nitens plantations of Tasmania, Australia. Forest Pathol 31:53–63

    Article  Google Scholar 

  • Milton SJ, Dean WRJ (1998) Alien plant assemblages near roads in arid and semi-arid South Africa. Divers Distrib 4:175–187

    Article  Google Scholar 

  • Nicolau R (2002) Modelo numérico de precipitação. INAG—Instituto da Água; IGP—Instituto Geográfico Português, Lisboa

    Google Scholar 

  • Pheloung PC, Williams PA, Halloy SR (1999) A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J Environ Manage 57:239–251

    Article  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288

    Article  Google Scholar 

  • Pinkard EA, Mohammed CL (2006) Photosynthesis of Eucalyptus globulus with Mycosphaerella leaf disease. New Phytol 170:119–127

    Article  CAS  PubMed  Google Scholar 

  • Potts BM, Vaillancourt RE, Jordan G et al (2004) Exploration of the Eucalyptus globulus gene pool. In: Borralho N, Pereira JS, Marques C, Coutinho J, Madeira M, Tomé M (eds) Eucalyptus in a changing world—IUFRO conference. RAIZ, Instituto de Investigação de Floresta e Papel, Aveiro, pp 46–61

    Google Scholar 

  • Potts BM, McGowen MH, Suitor S et al (2008) Advances in reproductive biology and seed production systems of Eucalyptus: the case of Eucalyptus globulus. South For J For Sci 70:145–154

    Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. Accessed 10 July 2014

  • Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661

    Article  Google Scholar 

  • Rejmánek M, Richardson DM (2011) Eucalypts. In: Simberloff D, Rejmánek M (eds) Encyclopedia of biological invasions. University of California Press, Los Angeles, pp 203–209

    Google Scholar 

  • Rejmánek M, Richardson DM (2013) Trees and shrubs as invasive alien species-2013 update of the global database. Divers Distrib 19:1093–1094

    Article  Google Scholar 

  • Rejmánek M, Richardson DM, Pyšek P (2005) Plant invasions and invasibility of plant communities. In: van der Maarel E (ed) Vegetation Ecology. Blackwell Science, Oxford, pp. 332–355

  • Richardson DM (1998) Forestry trees as invasive aliens. Conserv Biol 12:18–26

    Article  Google Scholar 

  • Richardson DM, Pyšek P (2012) Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytol 196:383–396

    Article  PubMed  Google Scholar 

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809

    Article  Google Scholar 

  • Richardson DM, Pyšek P, Rejmánek M et al (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107

    Article  Google Scholar 

  • Ridgeway G (2009) Generalized boosted regression models. Documentation on the R package, 1.5 ‘gbm’. http://www.R-Project.org. Accessed 10 July 2014

  • Rouget M, Richardson DM (2003) Inferring process from pattern in plant invasions: a semimechanistic model incorporating propagule pressure and environmental factors. Am Nat 162:713–724

    Article  PubMed  Google Scholar 

  • Rousselet J, Imbert C-E, Dekri A et al (2013) Assessing species distribution using Google Street View: a pilot study with the pine processionary moth. PLoS One 8:e74918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sánchez Márquez S, Bills GF, Zabalgogeazcoa I (2011) Fungal species diversity in juvenile and adult leaves of Eucalyptus globulus from plantations affected by Mycosphaerella leaf disease. Ann Appl Biol 158:177–187

    Article  Google Scholar 

  • Sanz-Elorza M, Dana ED, Sobrino E (2001) Checklist of invasive alien plants in Spain (Iberian Peninsula and Balearic Islands). Lazaroa 22:121–131

    Google Scholar 

  • Sanz-Elorza M, Dana ED, Sobrino E (2004) Atlas de las plantas alóctonas invasoras en España. Dirección General para la Biodiversidad. Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  • Shuster WD, Herms CP, Frey MN et al (2005) Comparison of survey methods for an invasive plant at the subwatershed level. Biol Invasions 7:393–403

    Article  Google Scholar 

  • Silva M, Valente C, Neves L et al (2008) Evaluation of Mycosphaerella impact on eucalypt plantations in Portugal. Rev Ciênc Agrár 31:112–118

    Google Scholar 

  • Soares P, Tomé M, Pereira JS (2007) A produtividade do eucaliptal. In: Alves AM, Pereira JS, Silva JMN (eds) O eucaliptal em Portugal—impactes ambientais e investigação científica. ISAPress, Lisbon, pp 27–60

    Google Scholar 

  • Stoneman GL (1994) Ecology and physiology of establishment of eucalypt seedlings from seed: a review. Australian Forestry 57:11–29

    Article  Google Scholar 

  • van Wilgen BW, Richardson DM (2014) Challenges and trade-offs in the management of invasive alien trees. Biol Invasions 16:721–734

  • Visser V, Langdon B, Pauchard A, Richardson DM (2014) Unlocking the potential of Google Earth as a tool in invasion science. Biol Invasions 16:513–534

  • Williams K, Potts B (1996) The natural distribution of Eucalyptus species in Tasmania. Tasforests 8:39–165

    Google Scholar 

  • Wilson JB, Rapson GL, Sykes MT et al (1992) Distributions and climatic correlations of some exotic species along roadsides in south island, New-Zealand. J Biogeogr 19:183–193

    Article  Google Scholar 

  • Zhang CS, Norris-Caneda KH, Rottmann WH et al (2012) Control of pollen-mediated gene flow in transgenic trees. Plant Physiol 159:1319–1334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ et al (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

This research was funded by Fundação para a Ciência e a Tecnologia (FCT): in the scope of project “WildGum” (FCT PTDC/AGR-FOR/2471/2012); F. X. C. was supported by a postdoctoral Grant (SFRH/BPD/93373/2013) and A. A. was supported by a Ph. D. Grant (SFRH/BD/76899/2011). We thank Miguel Rocha and Catarina Félix for their collaboration in data collection, and Brad Potts for relevant advices on the methodology. We also thank David Richardson and an anonymous reviewer for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. X. Catry.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 676 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catry, F.X., Moreira, F., Deus, E. et al. Assessing the extent and the environmental drivers of Eucalyptus globulus wildling establishment in Portugal: results from a countrywide survey. Biol Invasions 17, 3163–3181 (2015). https://doi.org/10.1007/s10530-015-0943-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-015-0943-y

Keywords

Navigation