Skip to main content

Advertisement

Log in

Alien species in a warming climate: a case study of the nutcracker and stone pines

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Species are predicted to shift their geographic range with climate change, which increases the need for good conservation planning and management practices. Not only may climate change increase the number of invasive species in parts of the world, it may also lead to some species becoming invasive under new, more preferable, climatic conditions. This study investigates whether climate change may enhance the spread of alien species by another alien species. I use the interaction between the alien slender-billed nutcracker and alien, potentially invasive, stone pines as a case-study and specifically aim to quantify to which extent the potential spread of stone pine species in Sweden in a warming climate is augmented by its dispersal agent: the slender-billed nutcracker. I found that accounting for the future climatic niche of the slender-billed nutcracker, and therefore for its potential presence, significantly augmented the increase of the predicted future range of the stone pines under climate change. This result does not only stress the importance of accounting for species interactions when assessing the impact of climate change on species’ future geographic ranges, it also stresses the need for nature conservationists and managers to incorporate species interactions and climate change when designing appropriate plans with regard to invasive species. Although the implications of the predicted future spread of the slender-billed nutcracker might be limited, since the very similar thick-billed nutcracker is native to Sweden, the effects of the stone pines should not be neglected. They are currently classified as potentially invasive in parts of the Nordic region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ananin AA, Sokolov LV (2009) Relationship between weather conditions, crops of Siberian pine nuts, and irruptions of Siberian nutcrackers Nucifraga caryocatactes macrorhynchos CL Brehm in Siberia and Europe. Avian Ecol Behav 15:23–31

    Google Scholar 

  • Anderson RP, Raza A (2010) The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J Biogeogr 37:1378–1393. doi:10.1111/j.1365-2699.2010.02290.x

    Article  Google Scholar 

  • Annila E (1975) The biology of Pissodes validirostris Gyll. (Col., Curculionidae) and its harmfulness, especially in Scots pine seed orchards. Metsantutkimuslaitoksen Julkaisuja 85:1–95

    Google Scholar 

  • Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492. doi:10.1111/j.1461-0248.2011.01610.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Archaux F (2004) Breeding upwards when climate is becoming warmer: no bird response in the French Alps. Ibis 146:138–144. doi:10.1111/j.1474-919X.2004.00246.x

    Article  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377. doi:10.1111/j.1461-0248.2011.01736.x

    Article  Google Scholar 

  • Berggren L (2005) Occurrence of Swiss stone pine (Pinus cembra) in a boreal forest landscape in relation to regeneration characteristics and habitat preferences by nutcrackers (Nucifraga caryocatactes). Dissertation, Swedish University of Agricultural Sciences (SLU)

  • Brommer JE (2004) The range margins of northern birds shift polewards. Ann Zool Fenn 41:391–397

    Google Scholar 

  • Bugmann HKM, Zierl B, Schumacher S (2005) Projecting the impacts of climate change on mountain forests and landscapes. In: Bugmann HKM, Reasoner MA, Huber UM (eds) Advances in global change research. Global change and mountain regions. Springer, Dordrecht, pp 477–487

    Chapter  Google Scholar 

  • Callaghan T, Björn L, Chernov Y et al (2004) Biodiversity, distributions and adaptations of Arctic species in the context of environmental change. AMBIO 33:404–417. doi:10.1579/0044-7447-33.7.404

    PubMed  Google Scholar 

  • Camaret S, Guerin B, Leclerc D (1998) Impact of nutcracker (Nucifraga caryocatactes L.) on the spatial distribution of Swiss stone pine (Pinus cembra L.) regeneration. Bull Soc Zool Fr 123:383–392

    Google Scholar 

  • Casalegno S, Amatulli G, Camia A, Nelson A, Pekkarinen A (2010) Vulnerability of Pinus cembra L. in the Alps and the Carpathian mountains under present and future climates. For Ecol Manag 259:750–761. doi:10.1016/j.foreco.2009.10.001

    Article  Google Scholar 

  • Cramp S, Perrins CM, Brooks DJ (1994) Handbook of the birds of Europe, the Middle East, and North Africa: the birds of the western Palearctic, vol 8., Crows to finchesOxford University Press, Oxford

    Google Scholar 

  • Didier L (2001) Invasion patterns of European larch and Swiss stone pine in subalpine pastures in the French Alps. For Ecol Manag 145:67–77. doi:10.1016/S0378-1127(00)00575-2

    Article  Google Scholar 

  • Dormont L, Roques A (2001) Why are seed cones of Swiss stone pine (Pinus cembra) not attacked by the specialized pine cone weevil, Pissodes validirostris? A case of host selection vs. host suitability. Entomol Exp Appl 99:157–163. doi:10.1046/j.1570-7458.2001.00813.x

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Farjon A (2013a) Pinus cembra. The IUCN red list of threatened species. Version 2014.2. http://www.iucnredlist.org/details/42349/0. Accessed 30 July 2014

  • Farjon A (2013b) Pinus sibirica. The IUCN red list of threatened species. Version 2014.2. http://www.iucnredlist.org/details/42415/0. Accessed 30 July 2014

  • Giannini TC, Chapman DS, Saraiva AM, Alves-Dos-Santos I, Biesmeijer JC (2013) Improving species distribution models using biotic interactions: a case study of parasites, pollinators and plants. Ecography 36:649–656

    Article  Google Scholar 

  • Graham RW, Lundelius EL, Graham MA et al (1996) Spatial response of mammals to late quaternary environmental fluctuations. Science 272:1601–1606

    Article  CAS  PubMed  Google Scholar 

  • Gritti E, Smith B, Sykes M (2006) Vulnerability of Mediterranean Basin ecosystems to climate change and invasion by exotic plant species. J Biogeogr 33:145–157

    Article  Google Scholar 

  • Gugerli F, Senn J, Anzidei M et al (2001) Chloroplast microsatellites and mitochondrial nad1 intron 2 sequences indicate congruent phylogenetic relationships among Swiss stone pine (Pinus cembra), Siberian stone pine (Pinus sibirica), and Siberian dwarf pine (Pinus pumila). Mol Ecol 10:1489–1497. doi:10.1046/j.1365-294X.2001.01285.x

    Article  CAS  PubMed  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference and prediction, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Hayashida M (2003) Seed dispersal of Japanese stone pine by the Eurasian nutcracker. Ornithol Sci 2:33–40. doi:10.2326/osj.2.33

    Article  Google Scholar 

  • Hof AR, Jansson R, Nilsson C (2012a) Future climate change will favour non-specialist mammals in the (sub) arctics. PLoS One 7:e52574. doi:10.1371/journal.pone.0052574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hof AR, Jansson R, Nilsson C (2012b) How biotic interactions may alter future predictions of species distributions: future threats to the persistence of the arctic fox in Fennoscandia. Divers Distrib 18:554–562. doi:10.1111/j.1472-4642.2011.00876.x

    Article  Google Scholar 

  • Hoffmann M, Hilton-Taylor C, Angulo A et al (2010) The impact of conservation on the status of the world’s vertebrates. Science 330:1503–1509. doi:10.1126/science.1194442

    Article  CAS  PubMed  Google Scholar 

  • Hogstad O (2013) Species richness and structure of a breeding passerine bird community in a spruce-dominated boreal forest in central Norway: stability from 1960s to 2013. Ornis Nor 36:52–60

    Article  Google Scholar 

  • Holt BG, Lessard J-P, Borregaard MK et al (2013) An update of Wallace’s zoogeographic regions of the world. Science 339:74–78. doi:10.1126/science.1228282

    Article  CAS  PubMed  Google Scholar 

  • Kaitera J, Hiltunen R (2011) Susceptibility of Pedicularis spp. to Cronartium ribicola and C. flaccidum in Finland. For Pathol 41:237–242. doi:10.1111/j.1439-0329.2010.00680.x

    Article  Google Scholar 

  • Kajimoto T, Onodera H, Ikeda S, Daimaru H, Seki T (1998) Seedling establishment of subalpine stone pine (Pinus pumila) by nutcracker (Nucifraga) seed dispersal on Mt. Yumori, Northern Japan. Arct Alp Res 30:408–417

    Article  Google Scholar 

  • Kharuk VI, Ranson KJ, Im ST, Dvinskaya ML (2009) Response of Pinus sibirica and Larix sibirica to climate change in southern Siberian alpine forest–tundra ecotone. Scand J For Res 24:130–139. doi:10.1080/02827580902845823

    Article  Google Scholar 

  • Lanner R, Nikkanen T (1990) Establishment of a NucifragaPinus mutualism in Finland. Ornis Fenn 67:24–27

    Google Scholar 

  • Lindelöw Å, Björkman C (2001) Insects on lodgepole pine in Sweden—current knowledge and potential risks. For Ecol Manag 141:107–116. doi:10.1016/S0378-1127(00)00494-1

    Article  Google Scholar 

  • Liu C, Berry P, Dawson T, Pearson R (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151. doi:10.1111/j.1466-8238.2007.00358.x

    Article  Google Scholar 

  • Mack RN, Simberloff D, Mark Lonsdale W, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710. doi:10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2

  • Mattes H (1994) Coevolutional aspects of stone pines and nutcracker. In: Schmidt WC, Holtmeier FK (eds) Proceedings of the international workshop on Subalpine stone pines and their environment: the status of our knowledge, INT-GTR 309 St. Moritz, Switzerland, 5–11 September 1992. Intermountain Research Station, UT, pp 31–35

  • Mclane SC, Aitken SN (2012) Whitebark pine (Pinus albicaulis) assisted migration potential: testing establishment north of the species range. Ecol Appl 22:142–153. doi:10.1890/11-0329.1

    Article  PubMed  Google Scholar 

  • Parmesan C, Ryrholm N, Stefanescu C et al (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583. doi:10.1038/21181

    Article  CAS  Google Scholar 

  • Peterson AR, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213:63–72. doi:10.1016/j.ecolmodel.2007.11.008

    Article  Google Scholar 

  • Phillips S, Anderson R, Schapire R (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rodríguez-Castañeda G, Hof AR, Jansson R, Harding LE (2012) Predicting the fate of biodiversity using species’ distribution models: enhancing model comparability and repeatability. PLoS One 7:e44402. doi:10.1371/journal.pone.0044402

    Article  PubMed Central  PubMed  Google Scholar 

  • Senn J, Schonenberger W, Wasem U (1994) Survival and growth of planted cembran pines at the alpine timberline. In: Schmidt WC, Holtmeier FK (eds) Proceedings of the international workshop on subalpine stone pines and their environment: the status of our knowledge, INT-GTR 309, St. Moritz, Switzerland, 5–11 September 1992. Intermountain Research Station, UT, pp 105–109

  • Thuiller W, Brotons L, Araujo MB, Lavorel S (2004) Effects of restricting environmental range of data to project current and future species distributions. Ecography 27:165–172. doi:10.1111/j.0906-7590.2004.03673.x

    Article  Google Scholar 

  • Thuiller W, Broennimann O, Hughes G, Alkemade JRM, Midgley GF, Corsi F (2006) Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Glob Chang Biol 12:424–440

    Article  Google Scholar 

  • Tjernberg M (2010) Nucifraga caryocatactes. Fåglar. ArtDatabanken, SLU http://artfakta.se/Artfaktablad/Nucifraga_Caryocatactes_100090.pdf. Accessed 5 March 2014 (in Swedish)

  • Tomback DF, Linhart YB (1990) The evolution of bird dispersed pines. Evol Ecol 4:185–219. doi:10.1007/BF02214330

    Article  Google Scholar 

  • Virkkala R, Marmion M, Heikkinen RK, Thuiller W, Luoto M (2010) Predicting range shifts of northern bird species: influence of modelling technique and topography. Acta Oecol 36:269–281. doi:10.1016/j.actao.2010.01.006

  • Walther G, Post E, Convey P et al (2002) Ecological responses to recent climate change. Nature 416:389–395. doi:10.1038/416389a

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Andrew Allen for useful comments on an earlier version of the manuscript. I further thank four anonymous reviewers for comments and suggestions on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anouschka R. Hof.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hof, A.R. Alien species in a warming climate: a case study of the nutcracker and stone pines. Biol Invasions 17, 1533–1543 (2015). https://doi.org/10.1007/s10530-014-0813-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-014-0813-z

Keywords

Navigation