Skip to main content

Advertisement

Log in

There goes the neighborhood: apparent competition between invasive and native orchids mediated by a specialist florivorous weevil

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The exotic orchid, Spathoglottis plicata, has naturalized and spread rapidly over Puerto Rico where it is generally considered to be innocuous. It is abundant and occupies the same habitat as the native orchid, Bletia patula. The two are hosts to the same native weevil, Stethobaris polita, a specialist on orchid flowers. We ask whether the weevils mediate apparent competition between the two orchids. We monitored weevil populations, floral damage and fruit set in B. patula in the presence and absence of S. plicata. We also experimentally tested whether weevils preferred one species over the other. Finally, we modeled the distribution of both orchid species to predict the extent by which the two species may interact in Puerto Rico. We found a significantly lower number of weevils and a higher fruit set for B. patula where S. plicata is absent, indicative that apparent competition is occurring. The choice experiments show that weevils prefer flowers of S. plicata over those of B. patula, but B. patula still sustained considerable damage. The current distribution of the native B. patula is nearly limited to the northern karst region of Puerto Rico. The naturalized S. plicata has a broader range and the models predict that its distribution will strongly overlap with that of B. patula. We expect the S. plicata invasion to continue and affect native orchids through apparent competition as long as the presence of S. plicata maintains elevated weevil populations. Thus, even seemingly harmless invasive orchids can have subtle but significant negative consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ackerman JD (1986) Mechanisms and evolution of food-deceptive pollination systems in orchids. Lindleyana 1:108–113

    Google Scholar 

  • Ackerman JD (1989) Limitations to sexual reproduction in Encyclia krugii (Orchidaceae). Syst Bot 14:101–109. doi:10.2307/2419054

    Article  Google Scholar 

  • Ackerman JD (1995) An orchid flora of Puerto Rico and the Virgin Islands. Mem New York Bot Gard 73:1–203

  • Ackerman JD (2007) Invasive orchids: weeds we hate to love? Lankesteriana 7:19–21

    Google Scholar 

  • Ackerman JD (2012a) Orchidaceae. In: Acevedo P, Strong M (eds) Catalogue of seed plants of the West Indies. Smithsonian Contrib Bot 98: 622–667. http://hdl.handle.net/10088/17551

  • Ackerman JD (2012b) Orchids gone wild: discovering naturalized orchids in Hawaii. Orchids 81:88–93

    Google Scholar 

  • Ackerman JD, Carromero W (2005) Is reproductive success related to color polymorphism in a deception pollinated tropical terrestrial orchid? Caribb J Sci 41:234–242

    Google Scholar 

  • Ackerman JD, Sabat A, Zimmerman JK (1996) Seedling establishment in an epiphytic orchid: an experimental study of seed limitation. Oecologia 106:192–198. doi:10.1007/BF00328598

    Article  Google Scholar 

  • Barbosa P, Hines J, Kaplan I, Martinson H, Szczepaniec A, Szendrei Z (2009) Associational resistance and associational susceptibility: having right or wrong neighbors. Annu Rev Ecol Evol Syst 40:1–20. doi:10.1146/annurev.ecolsys.110308.120242

    Article  Google Scholar 

  • Bonnardeaux Y, Brundrett M, Batty A, Dixon K, Koch J, Sivasithamparam K (2007) Diversity of mycorrhizal fungi of terrestrial orchids: compatibility web, brief encounters, lasting relationships and alien invasions. Mycol Res 111:51–61. doi:10.1016/j.mycres.2006.11.006

    Article  PubMed  Google Scholar 

  • Calvo RN, Horvitz C (1990) Pollinator limitation, cost of reproduction, and fitness in plants: transition matrix demographic approach. Am Nat 136:499–516. doi:10.1086/285110

    Article  Google Scholar 

  • Cariveau D, Irwin RE, Brody AK, García Mayeya L, von der Ohe A (2004) Direct and indirect effects of pollinators and seed predators to selection on plant and floral traits. Oikos 104:15–26. doi:10.1111/j.0030-1299.2004.12641.x

    Article  Google Scholar 

  • Catling PM (1990) Auto-pollination in the Orchidaceae. In: Arditti J (ed) Orchid biology: reviews and perspectives. V. Timber Press, Portland, pp 121–158

    Google Scholar 

  • Cuartas-Domínguez M, Medel R (2010) Pollinator-mediated selection and experimental manipulation of the flower phenotype in Chloraea bletioides. Funct Ecol 24:1219–1227. doi:10.1111/j.1365-2435.2010.01737.x

    Article  Google Scholar 

  • Daehler CC (2006) Invasibility of tropical islands by introduced plants: partitioning the influence of isolation and propagule pressure. Preslia 78:389–404

    Google Scholar 

  • Darwin CR (1877) The various contrivances by which orchids are fertilized by insects, 2nd edn. John Murray, London

    Google Scholar 

  • Departamento de Recursos Naturales y Ambientales (DRNA), Estado Libre Asociado de Puerto Rico (2007) Bosques de Puerto Rico: El Bosque de Río Abajo. Hojas de nuestro ambiente. P-023. http://www.drna.gobierno.pr/biblioteca/publicaciones/hojas-de-nuestro-ambiente/23-Rio%20Abajo.pdf. Accessed 24 Aug 2011

  • Dressler RL (1968) Notes on Bletia (Orchidaceae). Brittonia 20:182–190

    Article  Google Scholar 

  • Dressler RL (1981) The orchids: natural history and classification. Harvard University Press, Cambridge Mass

    Google Scholar 

  • Ewel JJ, Whitmore JL (1973) The ecological life zones of Puerto Rico and the U.S. Virgin Islands. Forest service research paper ITF-18, Department of Agriculture and Institute of Tropical Forestry, Forest Service, US

  • Gordon DR (1998) Effects of invasive, non-indigenous plant species on ecosystem processes: lessons from Florida. Ecol Appl 8:975–989. doi:10.1890/1051-0761(1998)008[0975:EOINIP]2.0.CO;2

    Article  Google Scholar 

  • Holt RD (1977) Predation, apparent competition, and the structure of prey communities. Theor Popul Biol 12:197–229

    Article  PubMed  CAS  Google Scholar 

  • Holt RD, Hochberg ME (2001) Indirect interactions, community modules and biological control: a theoretical perspective. In: Wajnberg E, Scott JK, Quimby PC (eds) Evaluating indirect ecological effects of biological control, 1st edn. CABI, New York, pp 13–38

    Google Scholar 

  • Hoogendoorn M, Heimpel GE (2002) Indirect interactions between an introduced and a native ladybird beetle species mediated by a shared parasitoid. Biol Control 25:224–230. doi:10.1016/S1049-9644(02)00101-9

    Article  Google Scholar 

  • Johnson SD, Peter CI, Agren J (2004) The effects of nectar addition on pollen removal and geitonogamy in the non-rewarding orchid, Anacamptis morio. Proc R Soc Lond B-Biol Sci 271:803–809. doi:10.1098/rspb.2003.2659

    Article  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Eco Evol 17:164–170. doi:10.1016/S0169-5347(02)02499-0

    Article  Google Scholar 

  • Kores PJ (1979) Taxonomy and pollination in the wild Hawaiian orchids. M.S. Thesis, University of Hawai’i, Manoa

  • Kueffer C, Daehler CC, Torres-Santana CW, Lavergne C, Meyer J, Otto R, Silva L (2010) A global comparison of plant invasions on oceanic islands. Perspect Plant Ecol Evol Syst 12:145–161. doi:10.1016/j.ppees.2009.06.002

    Article  Google Scholar 

  • Lau JA, Strauss SY (2005) Insect herbivores drive important indirect effects of exotic plants on native communities. Ecology 86:2990–2997. doi:10.1890/04-1779

    Article  Google Scholar 

  • Leavitt H, Robertson IC (2006) Petal herbivory by chrysomelid beetles (Phyllotreta sp.) is detrimental to pollination and seed production in Lepidium papilliferum (Brassicaceae). Ecol Entomol 31:657–660. doi:10.1111/j.1365-2311.2006.00820.x

    Article  Google Scholar 

  • Light MHS, Macconaill M (2011) Potential impact of insect herbivores on orchid conservation. Euro J Environ Sci 1:115–124

    Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson R (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393. doi:10.1111/j.0906-7590.2005.03957.x

    Article  Google Scholar 

  • Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology, 2nd edn. Blackwell, London

    Google Scholar 

  • Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species. A selection from the global invasive species database. Invasive Species Specialist Group, Species Survival Commission, International Union for Conservation of Nature, Aukland

    Google Scholar 

  • Malo JE, Leirana-Alcocer J, Parra-Tabla V (2001) Population fragmentation, florivory, and the effects of flower morphology alterations on the pollination success of Myrmecophila tibicinis (Orchidaceae). Biotropica 33:529–534. doi:10.1646/0006-3606(2001)033[0529:PFFATE]2.0.CO;2

    Google Scholar 

  • McCall AC (2008) Florivory affects pollinator visitation and female fitness in Nemophila menziesii. Oecologia 155:729–737. doi:10.1007/s00442-007-0934-5

    Article  PubMed  Google Scholar 

  • McCall AC, Irwin RE (2006) Florivory: the intersection of pollination and herbivory. Ecol Lett 9:1351–1365. doi:10.1111/j.1461-0248.2006.00975.x

    Article  PubMed  Google Scholar 

  • Meléndez-Ackerman EJ, Ackerman JD, Rodríguez-Robles JA (2000) Reproduction in an orchid can be resource-limited over its lifetime. Biotropica 32:282–290. doi:10.1646/0006-3606(2000)032[0282:RIAOCB]2.0.CO;2

    Google Scholar 

  • Montalvo AM, Ackerman JD (1987) Limitations to natural fruit production in Ionopsis utricularioides (Orchidaceae). Biotropica 19:24–31

    Article  Google Scholar 

  • Nilsson LA (1992) Orchid pollination biology. Trends Ecol Evol 7:255–258. doi:10.1016/0169-5347(92)90170-G

    Article  Google Scholar 

  • Nir M (2000) Orchidaceae Antillanae. DAG Media Publishing, New York

    Google Scholar 

  • Noonburg EG, Byers JE (2005) More harm than good: when invader vulnerability to predators enhances impact on native species. Ecology 86:2555–2560. doi:10.1890/05-0143

    Article  Google Scholar 

  • O’Brien CW, Turnbow RH Jr (2011) An annotated list of Curculionidae (Coleoptera) of Dominica (excluding Scolytinae and Platypodidae). Insecta Mundi 0179:1–31

    Google Scholar 

  • Orrock JL, Witter MS, Reichman OJ (2008) Apparent competition with an exotic plant reduces native plant establishment. Ecology 89:1168–1174. doi:10.1890/07-0223.1

    Article  PubMed  Google Scholar 

  • Parachnowitsch AL, Caruso CM (2008) Predispersal seed herbivores, not pollinators, exert selection on floral traits via female fitness. Ecology 89:1802–1810. doi:10.1890/07-0555.1

    Article  PubMed  Google Scholar 

  • Phillips SJ, Dudik M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the 21st international conference on machine learning, Banff, Canada

  • Rand TA (2003) Herbivore-mediated apparent competition between two salt marsh forbs. Ecology 84:1517–1526. doi:10.1890/0012-9658(2003)084[1517:HACBTS]2.0.CO;2

    Article  Google Scholar 

  • Rand TA, Louda SM (2004) Exotic weed invasion increases the susceptibility of native plants to attack by a biocontrol herbivore. Ecology 85:1548–1554. doi:10.1890/03-3067

    Article  Google Scholar 

  • Ricciardi A (2001) Facilitative interactions among aquatic invaders: is an “invasional meltdown” occurring in the Great Lakes? Can J Fish Aquat Sci 58:2513–2525. doi:10.1139/cjfas-58-12-2513

    Article  Google Scholar 

  • Richardson DM, Pysek P, Rejmanek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107. doi:10.1046/j.1472-4642.2000.00083.x

    Article  Google Scholar 

  • Russell FL, Louda SM (2005) Indirect interaction between two native thistles mediated by an invasive exotic floral herbivore. Oecologia 146:373–384. doi:10.1007/s00442-005-0204-3

    Article  PubMed  Google Scholar 

  • Russell FL, Louda SM, Rand TA, Kachman SD (2007) Variation in herbivore-mediated indirect effects of an invasive plant on a native plant. Ecology 88:413–423. doi:10.1890/0012-9658(2007)88[413:VIHIEO]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Schmitt RJ (1987) Indirect interactions between prey: apparent competition, predator aggregation, and habitat segregation. Ecology 68:1887–1897. doi:10.2307/1939880

    Article  Google Scholar 

  • Sheppard AW, van Klinken RD, Heard TA (2005) Scientific advances in the analysis of direct risks of weed biological control agents to nontarget plants. Biol Control 35:215–226. doi:10.1016/j.biocontrol.2005.05.010

    Article  Google Scholar 

  • Sieg CH (1993) Stethobaris commixta Blatchley (Coleoptera: Curculionideae) collected from a species of orchid, Platanthera praeclara Sheviak and Bowles in North Dakota tall-grass prairie. Prairie Nat 25:81

    Google Scholar 

  • Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102. doi:10.1146/annurev.ecolsys.110308.120304

    Article  Google Scholar 

  • Simberloff D, Von Hollen B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32. doi:10.1023/A:1010086329619

    Article  Google Scholar 

  • Smithson A (2002) The consequences of rewardlessness in orchids: reward-supplementation experiments with Anacamptis morio (Orchidaceae). Am J Bot 89:1579–1587. doi:10.3732/ajb.89.10.1579

    Article  PubMed  Google Scholar 

  • Smithson A (2005) Pollinator limitation and inbreeding depression in orchid species with and without nectar rewards. New Phytol 169:419–430. doi:10.1111/j.1469-8137.2005.01592.x

    Article  Google Scholar 

  • St. Hilaire L (2002) Amerorchis rotundifolia (Banks ex Pursh) Hultén, small round-leaved Orchis. Conservation and Research Plan for New England. New England Conservation Program, Framingham, MA, p 48

    Google Scholar 

  • Strauss SY (1991) Indirect effects in community ecology: their definition study and importance. Trends Ecol Evol 6:206–210. doi:10.1016/0169-5347(91)90023-Q

    Article  PubMed  CAS  Google Scholar 

  • Strauss SY, Irwin RE (2004) Ecological and evolutionary consequences of multispecies plant-animal interactions. Annu Rev Ecol Evol Syst 35:435–466. doi:10.1146/annurev.ecolsys.35.112202.130215

    Article  Google Scholar 

  • Strauss SY, Irwin RE, Lambrix VM (2004) Optimal defence theory and flower petal colour predict variation in the secondary chemistry of wild radish. J Ecol 92:132–141. doi:10.1111/j.1365-2745.2004.00843.x

    Article  Google Scholar 

  • Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN (2005) Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biol J Linn Soc 84:1–54. doi:10.1111/j.1095-8312.2004.00400.x

    Article  Google Scholar 

  • Trethowan PD, Robertson MP, McConnachie AJ (2011) Ecological niche modelling of an invasive alien plant and its potential biological control agents. S Afr J Bot 77:137–146. doi:10.1016/j.sajb.2010.07.007

    Article  Google Scholar 

  • van der Pijl L, Dodson CH (1966) Orchid flowers: their pollination and evolution. University of Miami Press, Coral Gables, FL

    Google Scholar 

  • White EM, Wilson JC, Clarke AR (2006) Biotic indirect effects: a neglected concept in invasion biology. Divers Distrib 12:443–455. doi:10.1111/j.1366-9516.2006.00265.x

    Article  Google Scholar 

  • Wiggins GJ, Grant JF, Lambdin PL, Ranney JW, Wilkerson JB, VanManen FT (2010) Spatial prediction of habitat overlap of introduced and native thistles to identify potential areas of nontarget activity of biological control agents. Environ Entomol 39:1866–1877. doi:10.1603/EN10112

    Article  PubMed  CAS  Google Scholar 

  • Wolcott GN (1948) The insects of Puerto Rico. Coleoptera. J Agric Univ Puerto Rico 32:225–416

    Google Scholar 

Download references

Acknowledgments

We thank Curt Daehler, Daniel Diaz, Nadia Flores, Wilfredo Falcón and Raymond Tremblay for helping with the species distribution modeling, GIS techniques and statistics. We are also grateful to Wildelina González, Ricardo Arriaga and Eduardo Otero for serving as field assistants. Constructive criticisms from anonymous reviewers were much appreciated. This work was supported by funds from NSF-UMEB: Undergraduate research on tropical ecosystems: from rainforest to cities (DBI-0602642, Alonso Ramírez PI), NSF-CREST (HRD-0734826, Elvira Cuevas PD), Ecological Society of America SEEDs program, and USDA Faculty and Student Training fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilnelia Recart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Recart, W., Ackerman, J.D. & Cuevas, A.A. There goes the neighborhood: apparent competition between invasive and native orchids mediated by a specialist florivorous weevil. Biol Invasions 15, 283–293 (2013). https://doi.org/10.1007/s10530-012-0283-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-012-0283-0

Keywords

Navigation