Skip to main content
Log in

Differential effect of wave stress on the physiology and behaviour of native versus non-native benthic invertebrates

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

In fresh waters, non-native invertebrate species preferentially spread via navigation waterways, where they often dominate assemblages. Littoral habitats in navigation waterways are regularly exposed to ship-induced waves. We conducted experiments to test the effects of artificial wave exposure on the relative performance of wide-spread native and non-native species. We compared physiological and behavioural response variables (i.e. growth rate, glycogen content, feeding and swimming activity) of two amphipods (native Gammarus roeselii and non-native Dikerogammarus villosus) and two gastropods (native Bithynia tentaculata and non-native Physella acuta) subject to wave and control (i.e. no wave) treatment flumes across a 6-week period. Growth, and in part glycogen content (as a measure of energy storage), were significantly reduced after exposure to waves in native invertebrates, but not in non-native invertebrates. The reduction in growth may be associated with the disturbance effects of waves, such as the higher swimming activity of G. roeselii and lower food uptake of B. tentaculata. In comparison, the effective hiding behaviour observed for D. villosus and good swimming ability of P. acuta, were identified as important traits facilitating the successful colonisation of the harsh habitat conditions of littoral waterways. Our study demonstrates that artificial wave regimes may contribute significant selective pressure, thus explaining the observed dominance of non-native species in navigational waterways. The success of non-native species under the harsh hydraulic habitat conditions of these socio-economically driven ecosystems may consequently be traced directly to behavioural and/or physiological traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alford RA, Brown GP, Schwarzkopf L, Phillips BL, Shine R (2009) Comparisons through time and space suggest rapid evolution of dispersal behaviour in an invasive species. Wildlife Res 36:23–28. doi:10.1071/WR08021

    Article  Google Scholar 

  • bij de Vaate A, Jazdzewski K, Ketelaars HAM, Gollasch S, van der Velde G (2002) Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Can J Fish Aquat Sci 59:1159–1174. doi:10.1139/F02-098

    Article  Google Scholar 

  • Bishop MJ (2008) Displacement of epifauna from seagrass blades by boat wake. J Exp Mar Biol Ecol 354:111–118. doi:10.1016/j.jembe.2007.10.013

    Article  Google Scholar 

  • Borcherding J, Sturm W (2002) The seasonal succession of macroinvertebrates, in particular the zebra mussel (Dreissena polymorpha), in the River Rhine and two neighbouring gravel-pit lakes monitored using artificial substrates. Int Rev Hydrobiol 87:165–181

    Article  Google Scholar 

  • Brendelberger H, Jurgens S (1993) Suspension feeding in Bithynia tentaculata (Prosobranchia, Bithyniidae), as affected by body size, food and temperature. Oecologia 94:36–42

    Article  Google Scholar 

  • Bruijs MCM, Kelleher B, van der Velde G, de Vaate AB (2001) Oxygen consumption, temperature and salinity tolerance of the invasive amphipod Dikerogammarus villosus: indicators of further dispersal via ballast water transport. Arch Hydrobiol 152:633–646

    Google Scholar 

  • Buckup L, Dutra BK, Ribarcki FP, Fernandes FA, Noro CK, Oliveira GT, Vinagre AS (2008) Seasonal variations in the biochemical composition of the crayfish Parastacus defossus (Crustacea, Decapoda) in its natural environment. Comp Biochem Phys A 149:59–67. doi:10.1016/j.cbpa.2007.10.008

    Article  CAS  Google Scholar 

  • Byers JE (2002) Impact of non-indigenous species on natives enhanced by anthropogenic alteration of selection regimes. Oikos 97:449–458

    Article  Google Scholar 

  • Cope NJ, Winterbourn MJ (2004) Competitive interactions between two successful molluscan invaders of freshwaters: an experimental study. Aquat Ecol 38:83–91

    Article  Google Scholar 

  • Correa C, Gross MR (2008) Chinook salmon invade southern South America. Biol Invas 10:615–639. doi:10.1007/s10530-007-9157-2

    Article  Google Scholar 

  • Cremer S, Ugelvig LV, Drijfhout FP, Schlick-Steiner BC, Steiner FM, Seifert B, Hughes DP et al (2008) The evolution of invasiveness in garden ants. PLoS ONE 3:e3838. doi:10.1371/journal.pone.0003838

    Article  PubMed  Google Scholar 

  • Dick JTA (2008) Role of behaviour in biological invasions and species distributions; lessons from interactions between the invasive Gammarus pulex and the native G. duebeni (Crustacea: Amphipoda). Contrib Zool 77:91–98

    Google Scholar 

  • Dick JTA, Platvoet D (2000) Invading predatory crustacean Dikerogammarus villosus eliminates both native and exotic species. Proc R Soc B-Biol Sci 267:977–983

    Article  CAS  Google Scholar 

  • Dick JTA, Elwood RW, Montgomery WI (1995) The behavioural basis of a species replacement–Differential aggression and predation between the introduced Gammarus pulex and the native G. duebeni celticus (Amphipoda). Behav Ecol Sociobiol 37:393–398

    Article  Google Scholar 

  • Dillon RT, Wethington AR, Rhett JM, Smith TP (2002) Populations of the European freshwater pulmonate Physa acuta are not reproductively isolated from American Physa heterostropha or Physa integra. Invertebr Biol 121:226–234

    Article  Google Scholar 

  • Gabel F, Stoll S, Fischer P, Pusch M, Garcia XF (2011) Waves affect predator-prey interactions between fish and benthic invertebrates. Oecologia 165:101–109. doi:10.1007/s00442-010-1841-8

    Google Scholar 

  • Gabel F, Garcia XF, Brauns M, Sukhodolov A, Leszinski M, Pusch MT (2008) Resistance to ship-induced waves of benthic invertebrates in various littoral habitats. Freshw Biol 53:1567–1578. doi:10.1111/j.1365-2427.2008.01991.x

    Article  Google Scholar 

  • Gergs R, Rothhaupt KO (2008) Feeding rates, assimilation efficiencies and growth of two amphipod species on biodeposited material from zebra mussels. Freshwater Biol 53:2494–2503. doi:10.1111/j.1365-2427.2008.02077.x

    Article  Google Scholar 

  • Grabowski M, Bacela K, Konopacka A (2007) How to be an invasive gammarid (Amphipoda: Gammaroidea)-comparison of life history traits. Hydrobiologia 590:75–84. doi:10.1007/s10750-007-0759-6

    Article  Google Scholar 

  • Henery ML, Bowman G, Mraz P, Treier UA, Gex-Fabry E, Schaffner U, Muller-Scharer H (2010) Evidence for a combination of pre-adapted traits and rapid adaptive change in the invasive plant Centaurea stoebe. J Ecol 98:800–813. doi:10.1111/j.1365-2745.2010.01672.x

    Article  Google Scholar 

  • Höckelmann C, Pusch M (2000) The respiration and filter-feeding rates of the snail Viviparus viviparus (Gastropoda) under simulated stream conditions. Arch Hydrobiol 49:553–568

    Google Scholar 

  • Holdich DM, Pöckl M (2007) Invasive crustaceans in European inland waters. In: Gherardi F (ed) Biological invaders in inland waters: profiles, distribution, and threats. Springer, Berlin, pp 29–75

    Chapter  Google Scholar 

  • Hunter RD (1975) Growth, fecundity, and bioenergetics in 3 populations of Lymnaea-Palustris in Upstate New-York. Ecology 56:50–63

    Article  Google Scholar 

  • Kinzelbach R (1995) Neozoans in European waters—exemplifying the worldwide process of invasion and species mixing. Experientia 51:526–538

    Article  CAS  Google Scholar 

  • Krisp H, Maier G (2005) Consumption of macroinvertebrates by invasive and native gammarids: a comparison. J Limnol 64:55–59

    Google Scholar 

  • Larson ER, Magoulick D, Turner C, Layock KH (2009) Disturbance and species displacement: different tolerances to stream drying and desiccation in a native and an invasive crayfish. Freshw Biol 54:1899–1908. doi:10.1111/j.1365-2427.2009.02243.x

    Article  Google Scholar 

  • Leuven RSEW, van der Velde G, Baijens I, Snijders J, van der Zwart C, Lenders HJR, de Vaate AB (2009) The river Rhine: a global highway for dispersal of aquatic invasive species. Biol Invas 11:1989–2008. doi:10.1007/s10530-009-9491-7

    Article  Google Scholar 

  • Mills EL, Leach JH, Carlton JT, Secor CL (1993) Exotic species in the Great-Lakes—a history of biotic crises and anthropogenic introductions. J Great Lakes Res 19:1–54

    Article  Google Scholar 

  • Miranda NAF, Perissinotto R, Appleton CC (2010) Salinity and temperature tolerance of the invasive freshwater gastropod Tarebia granifera. S Afr J 106:55–61. doi:10.4102/sajs.v106i3/4.156

    Google Scholar 

  • Moog O (ed) (2002) Fauna Aquatica Austriaca—a comprehensive species inventory of Austrian aquatic organisms with ecological notes. Wasserwirtschaftskataster. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Vienna

    Google Scholar 

  • Mörtl M, Rothhaupt KO (2003) Effects of adult Dreissena polymorpha on settling juveniles and associated macroinvertebrates. Int Rev Hydrobiol 88:561–569. doi:10.1002/iroh.200310640

    Article  Google Scholar 

  • Oscoz Pedro, Tomás P, Durán C (2010) Review and new records of non-indigenous freshwater invertebrates in the Ebro River basin (Northeast Spain). Aquat Invas 5:263–284. doi:10.3391/ai.2010.5.3.04

    Article  Google Scholar 

  • Pennuto C, Keppler D (2008) Short-term predator avoidance behavior by invasive and native amphipods in the Great Lakes. Aquat Ecol 42:629–641. doi:10.1007/s10452-007-9139-6

    Article  Google Scholar 

  • Platvoet D, Dick JTA, MacNeil C, van Riel MC, van der Velde G (2009a) Invader-invader interactions in relation to environmental heterogeneity leads to zonation of two invasive amphipods, Dikerogammarus villosus (Sowinsky) and Gammarus tigrinus Sexton: amphipod pilot species project (AMPIS) report 6. Biol Invas 11:2085–2093. doi:10.1007/s10530-009-9488-2

    Article  Google Scholar 

  • Platvoet D, van der Velde G, Dick JTA, Li SQ (2009b) Flexible omnivory in Dikerogammarus villosus (Sowinsky, 1894) (Amphipoda)—Amphipod Pilot Species Project (AMPIS) Report 5. Crustaceana 82:703–720. doi:10.1163/156854009X423201

    Article  Google Scholar 

  • Pöckl M (2007) Strategies of a successful new invader in European fresh waters: fecundity and reproductive potential of the Ponto-Caspian amphipod Dikerogammarus villosus in the Austrian Danube, compared with the indigenous Gammarus fossarum and G.roeselii. Freshw Biol 52:50–63. doi:10.1111/j.1365-2427.2006.01671.x

    Article  Google Scholar 

  • Pöckl M (2009) Success of the invasive Ponto-Caspian amphipod Dikerogammarus villosus by life history traits and reproductive capacity. Biol Invas 11:2021–2041. doi:10.1007/s10530-009-9485-5

    Article  Google Scholar 

  • Roe JH, Dailey RE (1966) Determination of glycogen with anthrone reagent. Anal Biochem 15:245–250

    Article  PubMed  CAS  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Biodiversity—global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Scheifhacken N (2006) Life at turbulent sites—Benthic communities in lake littorals interacting with abiotic and biotic constraints. Dissertation, University of Constance

  • Schlaepfer DR, Glättli M, Fischer M, Van Kleunen M (2009) A multi-species experiment in their native range indicates pre-adaptation of invasive alien plant species. New Phytol 185:1087–1099. doi:10.1111/j.1469-8137.2009.03114.x

    Article  PubMed  Google Scholar 

  • Strayer DL (2010) Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshw Biol 55:152–174. doi:10.1111/j.1365-2427.2009.02380.x

    Article  Google Scholar 

  • Tashiro JS (1982) Grazing in Bithynia-Tentaculata - age-specific bioenergetic patterns in reproductive partitioning of ingested carbon and nitrogen. Am Midl Nat 107:133–150

    Article  CAS  Google Scholar 

  • Tashiro JS, Colman SD (1982) Filter-feeding in the fresh-water Prosobranch snail Bithynia-Tentaculata - bioenergetic partitioning of ingested carbon and nitrogen. Am Midl Nat 107:114–132

    Article  CAS  Google Scholar 

  • Van der Velde G, Leuven RSEW, Platvoet D, Bacela K, Huijbregts MAJ, Hendriks HWM, Kruijt D (2009) Environmental and morphological factors influencing predatory behaviour by invasive non-indigenous gammaridean species. Biol Invas 11:2043–2054. doi:10.1007/s10530-009-9500-x

    Article  Google Scholar 

  • van Kleunen M, Dawson W, Schlaepfer D, Jeschke JM, Fischer M (2010) Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecol Lett 13(8):947–958. doi:10.1111/j.1461-0248.2010.01503.x

    PubMed  Google Scholar 

  • Whitney KD, Gabler CA (2008) Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. Divers Distrib 14:569–580. doi:10.1111/j.1472-4642.2008.00473.x

    Article  Google Scholar 

  • Young OR, Berkhout F, Gallopin GC, Janssen MA, Ostrom E, van der Leeuwd S (2006) The globalization of socio-ecological systems: an agenda for scientific research. Glo Env Cha 16:304–316. doi:10.1016/j.gloenvcha.2006.03.004

    Article  Google Scholar 

Download references

Acknowledgments

We thank T. Hintze, R. Hölzel and B. Schütze for technical support, and M. Mährlein, C. Sempf and J. Schreiber for help in running the experiments. We thank T. Mehner and the participants of the course on Scientific Writing at IGB for helpful discussion on an earlier draft of this article, S. Wittsack for the sketch of the wave flume and K. Pohlmann for statistical advice. The study was funded by scholarships of the German Federal Environmental Foundation (DBU) and the Foundation Ursula Merz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friederike Gabel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabel, F., Pusch, M.T., Breyer, P. et al. Differential effect of wave stress on the physiology and behaviour of native versus non-native benthic invertebrates. Biol Invasions 13, 1843–1853 (2011). https://doi.org/10.1007/s10530-011-0003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-011-0003-1

Keywords

Navigation