Skip to main content
Log in

The lacrimal gland: development, wound repair and regeneration

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The lacrimal gland (LG) is important as it has a significant role in maintaining the stability of the microenvironment of the ocular surface. When a loss of function occurs in the LG, a significant reduction in tear production and dry eye disease (DED) may occur. A mammalian LG is a secretory gland consisting of acini and ducts. The interaction between epithelial cells and mesenchymal cells plays a major role during development and the self-restoration process of the gland. Some factors, such as fibroblast growth factor 10 and bone morphogenetic protein 7, are associated with these processes. Though several strategies for LG regeneration have been established, there is still a long way to go before there is clarity about LG stem cells. In this review, current knowledge on LG development, LG self-repair, DED and correlative regeneration therapies are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ackermann P, Hetz S, Dieckow J, Schicht M, Richter A, Kruse C, Schroeder IS, Jung M, Paulsen FP (2015) Isolation and investigation of presumptive murine lacrimal gland stem cells. Investig Ophthalmol Vis Sci 56:4350–4363

    Article  Google Scholar 

  • Aragona P, Papa V, Micali A, Santocono M, Milazzo G (2002) Long term treatment with sodium hyaluronate-containing artificial tears reduces ocular surface damage in patients with dry eye. Br J Ophthalmol 86:181–184

    Article  PubMed  PubMed Central  Google Scholar 

  • Carreira AC, Alves GG, Zambuzzi WF, Sogayar MC, Granjeiro JM (2014) Bone morphogenetic proteins: structure, biological function and therapeutic applications. Arch Biochem Biophys 561:64–73

    Article  CAS  PubMed  Google Scholar 

  • Coppes RP, Stokman MA (2011) Stem cells and the repair of radiation-induced salivary gland damage. Oral Dis 17:143–153

    Article  CAS  PubMed  Google Scholar 

  • Dartt DA (2009) Neural regulation of lacrimal gland secretory processes: relevance in dry eye diseases. Prog Retin Eye Res 28:155–177

    Article  PubMed  PubMed Central  Google Scholar 

  • De La Cuadra-Blanco C, Peces-Pena MD, Merida-Velasco JR (2003) Morphogenesis of the human lacrimal gland. J Anat 203:531–536

    Article  PubMed  PubMed Central  Google Scholar 

  • Dean C, Ito M, Makarenkova HP, Faber SC, Lang RA (2004) Bmp7 regulates branching morphogenesis of the lacrimal gland by promoting mesenchymal proliferation and condensation. Development 131:4155–4165

    Article  CAS  PubMed  Google Scholar 

  • Dean CH, Miller LA, Smith AN, Dufort D, Lang RA, Niswander LA (2005) Canonical Wnt signaling negatively regulates branching morphogenesis of the lung and lacrimal gland. Dev Biol 286:270–286

    Article  CAS  PubMed  Google Scholar 

  • Ding XW, Wu JH, Jiang CP (2010) ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci 86:631–637

    Article  CAS  PubMed  Google Scholar 

  • Gromova A, Voronov DA, Yoshida M, Thotakura S, Meech R, Dartt DA, Makarenkova HP (2016) Lacrimal gland repair using progenitor cells. Stem Cells Transl Med 5:1–11

    Article  Google Scholar 

  • Han F, Li X, Song D, Jiang S, Xu Q, Zhang Y (2015) SCNT versus iPSCs: proteins and small molecules in reprogramming. Int J Dev Biol 59:179–186

    Article  PubMed  Google Scholar 

  • Hann LE, Tatro JB, Sullivan DA (1989) Morphology and function of lacrimal gland acinar cells in primary culture. Investig Ophthalmol Vis Sci 30:145–158

    CAS  Google Scholar 

  • Hessen M, Akpek EK (2014) Dry eye: an inflammatory ocular disease. J Ophthalmic Vis Res 9:240–250

    PubMed  PubMed Central  Google Scholar 

  • Hirayama M, Ogawa M, Oshima M, Sekine Y et al (2013) Functional lacrimal gland regeneration by transplantation of a bioengineered organ germ. Nat Commun 4:2497

    PubMed  PubMed Central  Google Scholar 

  • Hirayama M, Tsubota K, Tsuji T (2015) Bioengineered lacrimal gland organ regeneration in vivo. J Funct Biomater 6:634–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karbanova J, Missol-Kolka E, Fonseca AV, Lorra C et al (2008) The stem cell marker CD133 (Prominin-1) is expressed in various human glandular epithelia. J Histochem Cytochem 56:977–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleckowska-Nawrot J, Dziegiel P (2008) Morphology of lacrimal gland in pig fetuses. Anat Histol Embryol 37:74–77

    CAS  PubMed  Google Scholar 

  • Kobayashi S, Kawakita T, Kawashima M, Okada N, Mishima K, Saito I, Ito M, Shimmura S, Tsubota K (2012) Characterization of cultivated murine lacrimal gland epithelial cells. Mol Vis 18:1271–1277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima T, Ishida R, Dogru M, Goto E, Matsumoto Y, Kaido M, Tsubota K (2005) The effect of autologous serum eyedrops in the treatment of severe dry eye disease: a prospective randomized case-control study. Am J Ophthalmol 139:242–246

    Article  PubMed  Google Scholar 

  • Lemullois M, Rossignol B, Mauduit P (1996) Immunolocalization of myoepithelial cells in isolated acini of rat exorbital lacrimal gland: cellular distribution of muscarinic receptors. Biol Cell 86:175–181

    Article  CAS  PubMed  Google Scholar 

  • Lysy PA, Weir GC, Bonner-Weir S (2012) Concise review: pancreas regeneration: recent advances and perspectives. Stem Cells Transl Med 1:150–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macleod A, Kumar PA, Hertess I, Newing R (1990) Microvascular submandibular gland transfer; an alternative approach for total xerophthalmia. Brit J Plast Surg 43:437–439

    Article  CAS  PubMed  Google Scholar 

  • Makarenkova HP, Ito M, Govindarajan V, Faber SC, Sun L, McMahon G, Overbeek PA, Lang RA (2000) FGF10 is an inducer and Pax6 a competence factor for lacrimal gland development. Development 127:2563–2572

    CAS  PubMed  Google Scholar 

  • Messmer EM (2015) The pathophysiology, diagnosis, and treatment of dry eye disease. Dtsch Arztebl Int 112:71–81

    PubMed  PubMed Central  Google Scholar 

  • Miralles F, Lamotte L, Couton D, Joshi RL (2006) Interplay between FGF10 and Notch signalling is required for the self-renewal of pancreatic progenitors. Int J Dev Biol 50:17–26

    Article  CAS  PubMed  Google Scholar 

  • Moshirfar M, Pierson K, Hanamaikai K, Santiago-Caban L, Muthappan V, Passi SF (2014) Artificial tears potpourri: a literature review. Clin Ophthalmol 8:1419–1433

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Rahilly R, Müller F (1996) Human embryology & teratology. Wiley-Liss, New York

    Google Scholar 

  • Pan Y, Carbe C, Powers A, Zhang EE, Esko JD, Grobe K, Feng GS, Zhang X (2008) Bud specific N-sulfation of heparan sulfate regulates Shp2-dependent FGF signaling during lacrimal gland induction. Development 135:301–310

    Article  CAS  PubMed  Google Scholar 

  • Pflugfelder SC, Jones D, Ji Z, Afonso A, Monroy D (2009) Altered cytokine balance in the tear fluid and conjunctiva of patients with Sjögren’s syndrome keratoconjunctivitis sicca. Curr Eye Res 19:201–211

    Article  Google Scholar 

  • Robbins A, Kurose M, Winterson BJ, Meng ID (2012) Menthol activation of corneal cool cells induces TRPM8-mediated lacrimation but not nociceptive responses in rodents. Investig Ophthalmol Vis Sci 53:7034–7042

    Article  CAS  Google Scholar 

  • Roth M, Spaniol K, Kordes C, Schwarz S, Mertsch S, Haussinger D, Rotter N, Geerling G, Schrader S (2015) The influence of oxygen on the proliferative capacity and differentiation potential of lacrimal gland-derived mesenchymal stem cells. Investig Ophthalmol Vis Sci 56:4741–4752

    Article  CAS  Google Scholar 

  • Schechter J, Stevenson D, Chang D, Chang N, Pidgeon M, Nakamura T, Okamoto CT, Trousdale MD, Mircheff AK (2002) Growth of purified lacrimal acinar cells in Matrigel raft cultures. Exp Eye Res 74:349–360

    Article  CAS  PubMed  Google Scholar 

  • Schechter JE, Warren DW, Mircheff AK (2010) A lacrimal gland is a lacrimal gland, but rodent’s and rabbit’s are not human. Ocular Surf 8:111–134

    Article  Google Scholar 

  • Scoggins CR, Meszoely IM, Wada M, Means AL, Yang L, Leach SD (2000) p53-dependent acinar cell apoptosis triggers epithelial proliferation in duct-ligated murine pancreas. Am J Physiol Gastrointest Liver Physiol 279:G827–G836

    CAS  PubMed  Google Scholar 

  • Shatos MA, Haugaard-Kedstrom L, Hodges RR, Dartt DA (2012) Isolation and characterization of progenitor cells in uninjured, adult rat lacrimal gland. Investig Ophthalmol Vis Sci 53:2749–2759

    Article  CAS  Google Scholar 

  • Soares EJ, Franca VP (2005) Transplantation of labial salivary glands for severe dry eye treatment. Arq Bras Oftalmol 68:481–489

    Article  PubMed  Google Scholar 

  • Solomon A, Dursun D, Liu Z, Xie Y, Macri A, Pflugfelder SC (2001) Pro- and anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease. Investig Ophthalmol Vis Sci 42:2283–2292

    CAS  Google Scholar 

  • Su JZ, Cai ZG, Yu GY (2015) Microvascular autologous submandibular gland transplantation in severe cases of keratoconjunctivitis sicca. Maxillofac Plast Reconstr Surg 37:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Teven CM, Farina EM, Rivas J, Reid RR (2014) Fibroblast growth factor (FGF) signaling in development and skeletal diseases. Genes Dis 1:199–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Ali MJ, Balla MM, Naik MN, Honavar SG, Reddy VA, Vemuganti GK (2012) Establishing human lacrimal gland cultures with secretory function. PLoS ONE 7:e29458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Ali MJ, Vemuganti GK (2014) Human lacrimal gland regeneration: perspectives and review of literature. Saudi J Ophthalmol 28:12–18

    Article  PubMed  Google Scholar 

  • Tomita H, Tanaka K, Tanaka T, Hara A (2016) Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget 7:11018–11032

    PubMed  PubMed Central  Google Scholar 

  • Tsau C, Ito M, Gromova A, Hoffman MP, Meech R, Makarenkova HP (2011) Barx2 and Fgf10 regulate ocular glands branching morphogenesis by controlling extracellular matrix remodeling. Development 138:3307–3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umazume T, Thomas WM, Campbell S, Aluri H, Thotakura S, Zoukhri D, Makarenkova HP (2015) Lacrimal gland inflammation deregulates extracellular matrix remodeling and alters molecular signature of epithelial stem/progenitor cells. Investig Ophthalmol Vis Sci 56:8392–8402

    Article  CAS  Google Scholar 

  • Vissink A, Mitchell JB, Baum BJ, Limesand KH, Jensen SB, Fox PC, Elting LS, Langendijk JA, Coppes RP, Reyland ME (2010) Clinical management of salivary gland hypofunction and xerostomia in head-and-neck cancer patients: successes and barriers. Int J Radiat Oncol Biol Phys 78:983–991

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang YL, Tan Y, Satoh Y, Ono K (1995) Morphological changes of myoepithelial cells of mouse lacrimal glands during postnatal development. Histol Histopathol 10:821–827

    CAS  PubMed  Google Scholar 

  • Xiao B, Wang Y, Reinach PS, Ren Y, Li J, Hua S, Lu H, Chen W (2015) Dynamic ocular surface and lacrimal gland changes induced in experimental murine dry eye. PLoS ONE 10:e0115333

    Article  PubMed  PubMed Central  Google Scholar 

  • You S, Kublin CL, Avidan O, Miyasaki D, Zoukhri D (2011a) Isolation and propagation of mesenchymal stem cells from the lacrimal gland. Invest Ophthalmol Vis Sci 52:2087–2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You S, Tariq A, Kublin CL, Zoukhri D (2011b) Detection of BrdU-label retaining cells in the lacrimal gland: implications for tissue repair. Cell Tissue Res 346:317–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You S, Avidan O, Tariq A, Ahluwalia I, Stark PC, Kublin CL, Zoukhri D (2012) Role of epithelial-mesenchymal transition in repair of the lacrimal gland after experimentally induced injury. Invest Ophthalmol Vis Sci 53:126–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu GY, Zhu ZH, Mao C, Cai ZG, Zou LH, Lu L, Zhang L, Peng X, Li N, Huang Z (2004) Microvascular autologous submandibular gland transfer in severe cases of keratoconjunctivitis sicca. Int J Oral Maxillofac Surg 33:235–239

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Schuetz JD, Bunting KD, Colapietro AM et al (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034

    Article  CAS  PubMed  Google Scholar 

  • Zoukhri D (2010) Mechanisms involved in injury and repair of the murine lacrimal gland: role of programmed cell death and mesenchymal stem cells. Ocular Surf 8:60–69

    Article  Google Scholar 

  • Zoukhri D, Hodges RR, Byon D, Kublin CL (2002) Role of proinflammatory cytokines in the impaired lacrimation associated with autoimmune xerophthalmia. Investig Ophthalmol Vis Sci 43:1429–1436

    Google Scholar 

  • Zoukhri D, Macari E, Kublin CL (2007) A single injection of interleukin-1 induces reversible aqueous-tear deficiency, lacrimal gland inflammation, and acinar and ductal cell proliferation. Exp Eye Res 84:894–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoukhri D, Fix A, Alroy J, Kublin CL (2008) Mechanisms of murine lacrimal gland repair after experimentally induced inflammation. Investig Ophthalmol Vis Sci 49:4399–4406

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a Grant from National High Technology Research and Development Program of China (No. 2014AA020702), National Natural Science Foundation of China (No. 31371390) and Ph.D. Programs Foundation of Ministry of Education of China (No. 20130171110010). We thank Sa Xiao for suggestive discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Zhang, Y. The lacrimal gland: development, wound repair and regeneration. Biotechnol Lett 39, 939–949 (2017). https://doi.org/10.1007/s10529-017-2326-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-017-2326-1

Keywords

Navigation