Skip to main content

Advertisement

Log in

Metabolic pathways for lipid synthesis under nitrogen stress in Chlamydomonas and Nannochloropsis

  • REVIEW
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Microalgae are currently being considered as a clean, sustainable and renewable energy source. Enzymes that catalyse the metabolic pathways for biofuel production are specific and require strict regulation and co-ordination. Thorough knowledge of these key enzymes along with their regulatory molecules is essential to enable rational metabolic engineering, to drive the metabolic flux towards the desired metabolites of importance. This paper reviews two key enzymes that play their role in production of bio-oil: DGAT (acyl–CoA:diacylglycerol acyltransferase) and PDAT (phospholipid:diacylglycerol acyltransferase). It also deals with the transcription factors that control the enzymes while cell undergoes a metabolic shift under stress. The paper also discusses the association of other enzymes and pathways that provide substrates and precursors for oil accumulation. Finally a futuristic solution has been proposed about a synthetic algal cell platform that would be committed towards biofuel synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACC:

Acetyl-CoA carboxylase

ACP:

Acyl-carrier protein

LACS:

Long-chain acyl-CoA synthetase

ATP:CL:

ATP-dependent citrate lyase

CoA:

Coenzyme A

DGAT:

Diacylglycerol acyltransferase

FAS:

Fatty acid synthase

FAT:

Fatty acyl-ACP thioesterase

G3P:

Glycerate-3-phosphate

GPAT:

Glycerol-3-phosphate acyltransferase

KAS:

3-Ketoacyl-ACP synthase

LPAAT:

Lyso-phosphatidic acid acyltransferase

LPAT:

Lyso-phosphatidylcholine acyltransferase

PDC:

Pyruvate dehydrogenase complex

References

  • Banerjee C, Singh PK, Shukla P (2016a) Microalgal bioengineering for sustainable energy development: recent transgenesis and metabolic engineering strategies. Biotechnol J 11:303–314

    Article  CAS  PubMed  Google Scholar 

  • Banerjee C, Dubey KK, Shukla P (2016b) Metabolic engineering of microalgal based biofuel production: prospects and challenges. Front Microbiol 7:432

    PubMed  PubMed Central  Google Scholar 

  • Bellou S, Baeshen M, Elazzazy AM, Aggeli D, Sayegh F, Aggelis G (2014) Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv 32:1476–1493

    Article  CAS  PubMed  Google Scholar 

  • Blaby IK, Glaesener AG, Mettler T, Fitz-Gibbon ST, Gallaher SD, Liu B, Boyle NR, Kropat J, Stitt M, Johnson S, Benning C (2013) Systems-level analysis of nitrogen starvation–induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. Plant Cell 25:4305–4323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blatti JL, Beld J, Behnke CA, Mendez M, Mayfield SP, Burkart MD (2012) Manipulating fatty acid biosynthesis in microalgae for biofuel through protein–protein interactions. PLoS One 7:e42949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle NR, Page MD, Liu BS, Blaby IK, Casero D, Kropat J, Merchant SS (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem 287:15811–15825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao H (2011) Structure-function analysis of diacylglycerolacyltransferase sequences from 70 organisms. BMC Res Note 4:249

    Article  CAS  Google Scholar 

  • Carpinelli EC, Telatin A, Vitulo N, Forcato C, D’Angelo M, Schiavon R, Vezzi A, Giacometti GM, Morosinotto T, Valle G (2013) Chromosome scale genome assembly and transcriptome profiling of Nannochloropsisgaditana in nitrogen depletion. Mol Plant 7:323–335

    Article  Google Scholar 

  • Chen JE, Smith AG (2012) A look at diacylglycerol acyltransferases (DGATs) in algae. J Biotechnol 162:28–39

    Article  CAS  PubMed  Google Scholar 

  • Correa LGG, Riaño-Pachón DM, Schrago CG, Vicentini dos Santos R, Mueller-Roeber B, Vincentz M (2008) The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS ONE 3:e2944

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Zheng G, Li X, Lin H, Jiang P, Qin S (2013) Cloning and characterization of a novel diacylglycerol acyltransferase from the diatom Phaeodactylum tricornutum. J Appl Phycol 25:1509–1512

    Article  Google Scholar 

  • Deng X, Gu B, Li Y, Hu X, Guo J, Fei X (2012) The roles of acyl-CoA:diacylglycerolacyltransferase 2 genes in the biosynthesis of triacylglycerols by the green algae Chlamydomonas reinhardtii. Mol Plant 5:945–947

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Cai J, Li Y, Fei X (2014) Expression and knockdown of the PEPC1 gene affect carbon flux in the biosynthesis of triacylglycerols by the green alga Chlamydomonas reinhardtii. Biotechnol Lett 36:2199–2208

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Williams E, Wang D, Xie Z, Hsia R, Jenck A, Halden R, Li J, Chen F, Place A (2013) Responses of Nannochloropsis oceanica IMET1 to long-term nitrogen starvation and recovery. Plant Physiol 162:1110–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gargouri M, Park JJ, Holguin FO, Kim MJ, Wang H, Deshpande RR, Hill YS, Hicks LM, Gang DR (2015) Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii. J Exp Bot 26:4551–4566

    Article  Google Scholar 

  • Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Venter JC (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56

    Article  CAS  PubMed  Google Scholar 

  • Gong Y, Jiang M (2011) Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnol Lett 33:1269–1284

    Article  CAS  PubMed  Google Scholar 

  • Guarnieri MT, Nag A, Smolinski SL, Darzins A, Seibert M, Pienkos PT (2011) Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. PLoS ONE 6:e25851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot Cell 12:776–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khozin-Goldberg I, Cohen Z (2011) Unraveling algal lipid metabolism: recent advances in gene identification. Biochimie 93:91–100

    Article  CAS  PubMed  Google Scholar 

  • Klok AJ, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2014) Edible oils from microalgae: insights in TAG accumulation. Trends Biotechnol 32:521–528

    Article  CAS  PubMed  Google Scholar 

  • La Russa M, Bogen C, Uhmeyer A, Doebbe A, Filippone E, Kruse O, Mussgnug JH (2012) Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. J Biotechnol 162:13–20

    Article  PubMed  Google Scholar 

  • Li YT, Han DX, Hu GR, Dauvillee D, Sommerfeld M, Ball S, Hu Q (2010a) Chlamydomonasstarchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab Eng 12:387–391

    Article  PubMed  Google Scholar 

  • Li YT, Han DX, Hu GR, Sommerfeld M, Hu QA (2010b) Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 107:258–268

    Article  CAS  PubMed  Google Scholar 

  • Li XB, Moellering ER, Liu BS, Johnny C, Fedewa M, Sears BB, Kuo MH, Benning C et al (2012) Agalactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in Chlamydomonas reinhardtii. Plant Cell 24:4670–4686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Han D, Wang D, Ning K, Jia J, Wei L, Jing X, Huang S, Chen J, Li Y, Hu Q, Xua J (2014) Choreography of transcriptomes and lipidomes of Nannochloropsis reveals the mechanisms of oil synthesis in microalgae. Plant Cell 26:1645–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li DW, Cen SY, Liu YH, Balamurugan S, Zheng XY et al (2016) A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica. J Biotechnol 229:65–71

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Cao S, Zhang X, Zhu B, Su Z, Xu D, Guang X, Ye N (2013) De novo sequencing and global transcriptomeanalysis of Nannochloropsis sp. (eustigmatophyceae) following nitrogen starvation. Bioenerg Res 6:494–505

    Article  Google Scholar 

  • Liu B, Benning C (2013) Lipid metabolism in microalgae distinguishes itself. Curr Opin Biotechnol 24:300–309

    Article  CAS  PubMed  Google Scholar 

  • Longworth J, Noirel J, Pandhal J, Wright PC, Vaidyanathan S (2012) HILIC- and SCX-based quantitative proteomics of Chlamydomonas reinhardtii during nitrogen starvation induced lipid and carbohydrate accumulation. J Proteome Res 11:5959–5971

    CAS  PubMed  Google Scholar 

  • Merchant SS, Kropat J, Liu BS, Shaw J, Warakanont J (2012) TAG, You’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotechnol 23:352–363

    Article  CAS  PubMed  Google Scholar 

  • Miller R, Wu G, Deshpande R, Vieler A, Gartner K, Li X, Moellering E, Zauner S et al (2010) Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol 154:1737–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moellering ER, Benning C (2010) RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot Cell 9:97–106

    Article  CAS  PubMed  Google Scholar 

  • Ngan CY, Wong CH, Choi C, Yoshinaga Y, Louie K, Jia J, Chen C, Bowen B, Cheng H, Leonelli L, Kuo R, Wei CL (2015) Lineage-specific chromatin signatures reveal a regulator of lipid metabolism in microalgae. Nat Plants. 1:15107

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HM, Baudet M, Cuiné S, Adriano JM, Barthe D, Billon E, Bruley C, Beisson F, Peltier G, Ferro M, Li-Beisson Y (2011) Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics 11:4266–4273

    Article  CAS  PubMed  Google Scholar 

  • Niu YF, Zhang MH, Li DW, Yang WD, Liu JS, Bai WB, Li HY (2013) Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by over expressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs 11:4558–4569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noor-Mohammadi S, Pourmir A, Johannes TW (2014) Method for assembling and expressing multiple genes in the nucleus of microalgae. Biotechnol Lett 36:561–566

    Article  CAS  PubMed  Google Scholar 

  • Radakovits R, Eduafo PM, Posewitz MC (2011) Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab Eng 13:89–95

    Article  CAS  PubMed  Google Scholar 

  • Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun 3:686

    Article  PubMed  PubMed Central  Google Scholar 

  • Simionato D, Block MA, La Rocca N, Jouhet J, Maréchal E, Finazzi G, Morosinotto T (2013) The response of Nannochloropsisgaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipidsand reorganization of the photosynthetic apparatus. Eukaryot Cell 12:665–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14:2596–2610

    Article  CAS  Google Scholar 

  • Trentacoste EM, Shrestha RP, Smith SR, Gle C, Hartmann AC, Hildebrand M, Gerwick WH (2013) Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci USA 110:19748–19753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turchetto-Zolet AC, Maraschin FS, de Morais GL, Cagliari A, Andrade CM, Margis-Pinheiro M, Margis R (2011) Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis. BMC Evolut Biol 11:263

    Article  CAS  Google Scholar 

  • Valledor L, Furuhashi T, Recuenco-Muñoz L, Wienkoop S, Weckwerth W (2014) System-level network analysis of nitrogen starvation and recovery in Chlamydomonas reinhardtii reveals potential new targets for increased lipid accumulation. Biotechnol Biofuels 7:171

    Article  PubMed  PubMed Central  Google Scholar 

  • Vieler A, Wu G, Tsai CH, Bullard B, Cornish AJ, Harvey C, Campbell MS (2012) Genome, functional gene annotation and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8:e1003064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8:1856–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Wang J, Zhang W, Meldrum DR (2012) Application of synthetic biology in cyanobacteria and algae. Front Microbiol 3:344

    PubMed  PubMed Central  Google Scholar 

  • Wang D, Ning K, Li J, Hu J, Han D, Wang H, Chang X (2014) Nannochloropsis genomes reveal evolution of microalgal oleaginous traits. PLoS Genet 10:e1004094

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang ZK, Niu YF, Ma YH, Xue J, Zhang MH, Yang WD, Liu JS, Lu SH, Guan Y, Li HY (2013) Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol Biofuels 6:67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yazdi HR, Haznedaroglu BZ, Hsin C, Peccia J (2012) Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnol Biofuels 5:74

    Article  Google Scholar 

  • Yoon K, Han D, Li Y, Sommerfeld M, Hu Q (2012) Phospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii. Plant Cell 24:3708–3724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zienkiewicz K, Du ZY, Ma W, Vollheyde K, Benning C (2016) Stress-induced neutral lipid biosynthesis in microalgae-molecular, cellular and physiological insights. Biochim Biophys Acta 1861:1269–1281. doi:10.1016/j.bbalip.2016.02.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Chiranjib Banerjee highly acknowledges the Department of Science and Technology (DST), Government of India for providing financial support as well as a project grant from the INSPIRE Faculty award scheme (DST/INSPIRE Faculty Award/2014/LSPA-25). AB also acknowledges ISM Dhanbad for providing research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiranjib Banerjee.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Maiti, S.K., Guria, C. et al. Metabolic pathways for lipid synthesis under nitrogen stress in Chlamydomonas and Nannochloropsis . Biotechnol Lett 39, 1–11 (2017). https://doi.org/10.1007/s10529-016-2216-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-016-2216-y

Keywords

Navigation