Skip to main content
Log in

Gene chip analysis of Arabidopsis thaliana genomic DNA methylation and gene expression in response to carbendazim

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To examine the effects of carbendazim on Arabidopsis genomic DNA methylation and gene expression.

Results

Carbendazim caused widespread changes in gene loci methylation and gene expression. With 0.1 mM (D2) and 0.2 mM (D3) carbendazim, there were, respectively, 1522 and 2278 demethylated sites and 1541 and 2790 methylated sites. A total of 279 and 505 genes were up-regulated by more than 300 % and 175 and 609 genes were down-regulated by 67 % in D2 and D3 treatments, respectively, compared with the control. Conjoint analysis showed that 20 and 39 demethylated genes were up-regulated >300 % and 21 and 24 methylated genes were down-regulated <67 % in D2 and D3, respectively.

Conclusions

Carbendazim causes methylation or demethylation of certain genes and changes the expression of these genes. These findings provide a theoretical basis for novel epigenetics-based methods to detect organic food and a new interpretation for the degradation of crop varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aryee MJ, Wu Z, Ladd-Acosta C, Herb B, Feinberg AP et al (2011) Accurate genome-scale percentage DNA methylation estimates from microarray data. Biostatistics 12:197–210

    Article  PubMed Central  PubMed  Google Scholar 

  • Becker C, Weigel D (2012) Epigenetic variation: origin and transgenerational inheritance. Curr Opin Plant Biol 15:562–567

    Article  CAS  PubMed  Google Scholar 

  • Chanda S, Dasgupta UB, Guhamazumder D, Gupta M et al (2006) DNA hypermethylation of promoter ofgene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicology 89:431–437

    Article  CAS  Google Scholar 

  • Chen ZJ (2013) Genomic and epigenetic insights into the molecular bases of heterosis. Nature Rev Genet 14:471–482

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Li S, Liu J, Diwan BA, Barrett JC, Waalkes MP (2004) Chronicinorganic arsenic exposure induces hepatic global and individual gene hypomethylation:implications for arsenic hepatocarcinogenesis. Carcinogenesis 25:1779–1786

    Article  CAS  PubMed  Google Scholar 

  • Collotta M, Bertazzi PA, Bollati V (2013) Epigenetics and pesticides. Toxicology 307:35–41

    Article  CAS  PubMed  Google Scholar 

  • Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622–627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gershenzon J (1984) Changes in the levels of plant secondary metabolites under water and nutrient stress. In: Timmermann BN et al (eds) Phytochemical adaptations to stress. Springer, Berlin, pp 273–320

    Chapter  Google Scholar 

  • Ghimire N, Woodward RT (2013) Under-and over-use of pesticides: an international analysis. Ecol Econ 89:73–81

    Article  Google Scholar 

  • Guerrero-Bosagna C, Settles M, Lucker B, Skinner M (2010) Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS ONE 5(9):e13100

    Article  PubMed Central  PubMed  Google Scholar 

  • Hatfield DL, Berry MJ, Gladyshev VN (2012) Selenium: its molecular biology and role in human health. Springer, New York

    Book  Google Scholar 

  • He G, He H, Deng XW (2013) Epigenetic variations in plant hybrids and their potential roles in Heterosis. J Gen Genom 40:205–210

    Article  CAS  Google Scholar 

  • Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 447:418–424

    Article  CAS  PubMed  Google Scholar 

  • Jaga K, Dharmani C (2005) The epidemiology of pesticide exposure and cancer: a review. Rev Environ Health 20:15–38

    Article  CAS  PubMed  Google Scholar 

  • Karan R, Deleon T, Biradar H, Subudhi PK (2012) Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS ONE 7:e40203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klironomos FD, Berg J, Collins S (2013) How epigenetic mutations can affect genetic evolution: model and mechanism. BioEssays 35:571–578

    Article  PubMed  Google Scholar 

  • Koutros S, Alavanja MC, Lubin JH, Sandler DP, Hoppin JA et al (2010) An update of cancer incidence in the agricultural health study. J Occupat Environ Med 52:1098–1105

    Article  Google Scholar 

  • Li X, Zhu JD, Hu FY, Ge S, Ye MZ (2012) Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Gen 13:300

    Article  CAS  Google Scholar 

  • Macedo WR, Fernandes GM, Possenti RA, Lambais GR, Castro PRC (2013) Responses in root growth, nitrogen metabolism and nutritional quality in Brachiaria with the use of thiamethoxam. Acta Physiol Plant 35:205–211

    Article  CAS  Google Scholar 

  • Mansego-Talavera ML, Milagro FI, Campion J, Martinez A (2013) Techniques of DNA methylation analysis with nutritional applications. J Nutrig Nutrigen 6:83–96

    Article  Google Scholar 

  • Masakapalli SK, Kruger NJ, Ratcliffe RG (2013) The metabolic flux phenotype of heterotrophic Arabidopsis cells reveals a complex response to changes in nitrogen supply. Plant J 74:56–582

    Article  Google Scholar 

  • Matladi NN, He´ le`ne D, Fuks F (2011) Exposing the DNA methylome iceberg. Trends in Biochem Sci 36:381–387

    Google Scholar 

  • McCarthy N (2013) Epigenetics: the long view. Nature Rev Cancer 13(2):76

    Article  CAS  Google Scholar 

  • Mori Y, Olaru AV, Cheng Y, Agarwal R, Yang J (2011) Novel candidate colorectal cancer biomarkers identified by methylation microarray-based scanning. Endocr Relat Cancer 18:465–478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nogales F, Ojeda ML, Fenutría M, Murillo ML, Carreras O (2013) Role of selenium and glutathione peroxidase on development, growth, and oxidative balance in rat offspring. Reproduction 146(6):659–667

    Article  CAS  PubMed  Google Scholar 

  • Pilsner JR, Liu X, Ahsan H, Ilievski V (2007) Genomic methylation of peripheral bloodleukocyte DNA: influencs of arsenic and folate in Bangladeshi adults. Am J Clin Nutr 86:1179–1186

    CAS  PubMed  Google Scholar 

  • Pilsner JR, Liu X, Ahsan H, Ilievski V (2009) Folate deficiency, hyperhomocysteinemia, low urinary creatinine and hypomethylation of leukocyte DNA are risk factors for arsenic-induced skin lesions. Environ Health Perspect 117:254–260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sabaouni I, Moussa A, Vannier B, Semlali O, Pietka TA et al (2013) The whole genome expression analysis using two microarray technologies to identify gene networks that mediate the myocardial phenotype of CD36 deficiency. Bioinformation 9:849

    Article  PubMed Central  PubMed  Google Scholar 

  • Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA et al (2011) Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 6:692–702

    Article  CAS  PubMed  Google Scholar 

  • Schumacher A, Kapranov P, Kaminsky Z, Flanagan J, Assadzadeh A (2006) Microarray-based DNA methylation profiling: technology and applications. Nucleic Acid Res 34:528–542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sciandrello G, Caradonna F, Mauro M, Barbata G (2004) Arsenic-induced DNAhypomethylation affects chromosomal instability in mammalian cells. Carcinogenesis 25:413–417

    Article  CAS  PubMed  Google Scholar 

  • Stouder C, Paoloni-Giacobino A (2011) Specific transgenerational imprintingeffects of the endocrine disruptor methoxychlor on male gametes. Reproduction 141:207–216

    Article  CAS  PubMed  Google Scholar 

  • Taiwo LB, Oso BA (1997) The influence of some pesticides on soil microbial flora in relation to changes in nutrient level, rock phosphate solubilization and P release under laboratory conditions. Agric Ecosyst Environ 65:59–68

    Article  CAS  Google Scholar 

  • Thompson A (2010) Pests and diseases. In: Carroll M, Wilford S (eds) Controlled atmosphere storage of fruits and vegetables. MPG Books Group, Preston, pp 71–80

    Chapter  Google Scholar 

  • Timmusk S, Gerhart E, Wagner H (1999) The plant-growth-promoting Rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant microb Interact 12:951–959

    Article  CAS  Google Scholar 

  • Triche TJ, Weisenberger DJ, Van Den Berg D, Laird PW, Siegmund KD (2013) Low-level processing of illumina infinium DNA methylation beadarrays. Nucleic Acid Res 41:e90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tyunin A, Kiselev K, Zhuravlev Y (2012) Effects of 5-azacytidine induced DNA demethylation on methyltransferase gene expression and resveratrol production in cell cultures of Vitis amurensis. Plant Cell Tissue Org Cult 111:91–100

    Article  CAS  Google Scholar 

  • Wang WS, Pan YJ, Zhao XQ, Dwivedi D, Zh LH et al (2011) Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 62:1951–1960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang S, Wang Z, Zhang Y, Wang J, Guo R (2013) Pesticide residues in market foods in Shaanxi Province of China in 2010. Food Chem 138:2016–2025

    Article  CAS  PubMed  Google Scholar 

  • Weichenthal S, Moase C, Chan P (2010) A review of pesticide exposure and cancer incidence in the agricultural health study cohort. Environ Health Persp 118:1117–1125

    Article  CAS  Google Scholar 

  • Zama AM, Uzumcu M (2009) Fetal and neonatal exposure to the endocrinedisruptor methoxychlor causes epigenetic alterations in adult ovarian genes. Endocrinology 150:4681–4691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang X, Andrew DW, Du P, Kibbe WA (2012a) DNA methylation alterations in response to pesticide exposure in vitro. Environ Mol Mut 53:542–549

    Article  CAS  Google Scholar 

  • Zhang X, BreksaIII AP, Mishchuk DO, Fake CE, O’Mahony MA (2012b) Fertilisation and pesticides affect mandarin orange nutrient composition. Food Chem 134:1020–1024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from the National Science Foundation of China(no. 31171982, no. 31372090)and the Foundation of Henan University (China) (no. 0000A40448).

Conflict of interests

The authors declare that they have no conflict of interests.

Supporting information

Supplementary Fig. 1—The length of roots was significantly decreased with the carbendazim added.

Supplementary Fig. 2—The number of fibrous roots was significantly increased with the carbendazim added.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suoping Li.

Additional information

Zhongai Li and Zicheng Wang have contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 80 kb)

Supplementary material 2 (TIFF 3886 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, Z. & Li, S. Gene chip analysis of Arabidopsis thaliana genomic DNA methylation and gene expression in response to carbendazim. Biotechnol Lett 37, 1297–1307 (2015). https://doi.org/10.1007/s10529-015-1789-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1789-1

Keywords

Navigation