Skip to main content
Log in

Drug metabolism in microorganisms

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Several wild type and recombinant microorganisms can transform drugs to the equivalent human metabolites. Fungi, such as Cunninghamella spp., and Streptomyces bacteria express cytochrome P450 (CYP) enzymes that enable analogous phase I (oxidative) reactions with a wide range of drugs. The gene encoding the bifunctional CYP102A1 in Bacillus megaterium can be expressed easily in E. coli, and extensive mutagenesis experiments have generated numerous variants that can produce human drug metabolites. Additionally, human CYP isoforms have been expressed in various hosts. The application of microbial CYPs to the production of human drug metabolites is reviewed, and additional applications in the field of drug development are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amadio J, Gordon K, Murphy CD (2010) Biotransformation of flurbiprofen by Cunninghamella species. Appl Environ Microbiol 76:6299–6303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Amadio J, Casey E, Murphy CD (2013) Filamentous fungal biofilm for production of human drug metabolites. Appl Microbiol Biotechnol 97:5955–5963

    Article  CAS  PubMed  Google Scholar 

  • Asha S, Vidyavathi M (2009) Cunninghamella—a microbial model for drug metabolism studies—a review. Biotechnol Adv 27:16–29

    Article  CAS  PubMed  Google Scholar 

  • Bright TV, Clark BR, O’Brien E, Murphy CD (2011) Bacterial production of hydroxylated and amidated metabolites of flurbiprofen. J Mol Catal B 72:116–121

    Article  CAS  Google Scholar 

  • Bright TV, Dalton F, Elder VL, Murphy CD, O’Connor NK, Sandford G (2013) A convenient chemical–microbial method for developing fluorinated pharmaceuticals. Org Biomol Chem 11:1135–1142

    Article  CAS  PubMed  Google Scholar 

  • Buchheit D, Dragan CA, Schmitt EI, Bureik M (2011) Production of ibuprofen acyl glucosides by human UGT2B7. Drug Metab Dispos 39:2174–2181

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE, Yang SK (1984) Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans. Appl Environ Microbiol 47:119–124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cornelissen S, Julsing MK, Schmid A, Bühler B (2012) Comparison of microbial hosts and expression systems for mammalian CYP1A1 catalysis. J Ind Microbiol Biotechnol 39:275–287

    Article  CAS  PubMed  Google Scholar 

  • Di Nardo G, Fantuzzi A, Sideri A, Panicco P, Sassone C, Giunta C, Gilardi G (2007) Wild-type CYP102A1 as a biocatalyst: turnover of drugs usually metabolised by human liver enzymes. J Biol Inorg Chem 12:313–323

    Article  CAS  PubMed  Google Scholar 

  • Drăgan CA, Peters FT, Bour P, Schwaninger AE, Schaan SM, Neunzig I, Widjaja M, Zapp J, Kraemer T, Maurer HH, Bureik M (2011) Convenient gram-scale metabolite synthesis by engineered fission yeast strains expressing functional human P450 systems. Appl Biochem Biotechnol 163:965–980

    Article  PubMed  Google Scholar 

  • Ferris JP, Macdonald LH, Patrie MA, Martin MA (1976) Aryl-hydrocarbon hydroxylase-activity in fungus Cunninghamella bainieri—evidence for presence of cytochrome-P-450. Arch Biochem Biophys 175:443–452

    Article  CAS  PubMed  Google Scholar 

  • Geier M, Braun A, Emmerstorfer A, Pichler H, Glieder A (2012) Production of human cytochrome P450 2D6 drug metabolites with recombinant microbes—a comparative study. Biotechnol J 7:1346–1358

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez FJ, Korzekwa KR (1995) Cytochromes P450 expression systems. Ann Rev Pharmacol Toxicol 35:369–390

    Article  CAS  Google Scholar 

  • Han CH, Barrios FJ, Riofski MV, Colby DA (2009) Semisynthetic Derivatives of Sesquiterpene lactones by palladium-catalyzed arylation of the alpha-methylene-gamma-lactone substructure. J Org Chem 74:7176–7179

    Article  CAS  PubMed  Google Scholar 

  • Jezequel SG (1998) Microbial models of mammalian metabolism: uses and misuses (clarification of some misconceptions). J Mol Catal B 5:371–377

    Article  CAS  Google Scholar 

  • Kolev JN, Zaengle JM, Ravikumar R, Fasan R (2014) Enhancing the efficiency and regioselectivity of P450 oxidation catalysts by unnatural amino acid mutagenesis. ChemBioChem 15:1001–1010

    Article  CAS  PubMed  Google Scholar 

  • Lamb DC, Skaug T, Song HL, Jackson CJ, Podust LM, Waterman MR, Kell DB, Kelly DE, Kelly SL (2002) The cytochrome p450 complement (CYPome) of Streptomyces coelicolor A3(2). J Biol Chem 277:24000–24005

    Article  CAS  PubMed  Google Scholar 

  • Lamb DC, Waterman MR, Zhao B (2013) Streptomyces cytochromes P450: applications in drug metabolism. Expert Opin Drug Metab Toxicol 9:1279–1294

    Article  CAS  PubMed  Google Scholar 

  • Li HY, Poulos TL (1997) The structure of the cytochrome P450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nat Struct Biol 4:140–146

    Article  CAS  PubMed  Google Scholar 

  • Lin LH, Huang HH, Zhang P, Qi XL, Zhong DF (2007) Microbial transformation of dextromethorphan by Cunninghamella blakesleeana AS 3.153. Chem Pharm Bull 55:658–661

    Article  CAS  PubMed  Google Scholar 

  • Lisowska K, Szemraj J, Rozalska S, Dlugonski J (2006) The expression of cytochrome P-450 and cytochrome P-450 reductase genes in the simultaneous transformation of corticosteroids and phenanthrene by Cunninghamella elegans. FEMS Microbiol Lett 261:175–180

    Article  CAS  PubMed  Google Scholar 

  • Martina G, Christian S, Anton G (2013) First functional expression of cytochrome P450 3A4 in Pichia pastoris. Chim Oggi-Chem Today 31:24–27

    CAS  Google Scholar 

  • Narhi LO, Fulco AJ (1986) Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 261:7160–7169

    CAS  PubMed  Google Scholar 

  • Noble MA, Miles CS, Chapman SK, Lysek DA, Mackay AC, Reid GA, Hanzlik RP, Munro AW (1999) Roles of key active-site residues in flavocytochrome P450 BM3. Biochem J 339:371–379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Omiecinski CJ, Remmel RP, Hosagrahara VP (1999) Concise review of the cytochrome P450s and their roles in toxicology. Toxicol Sci 48:151–156

    Article  CAS  PubMed  Google Scholar 

  • Osorio-Lozada A, Surapaneni S, Skiles GL, Subramanian R (2008) Biosynthesis of drug metabolites using microbes in hollow fiber cartridge reactors: case study of diclofenac metabolism by Actinoplanes species. Drug Metab Dispos 36:234–240

    Article  CAS  PubMed  Google Scholar 

  • Paludo CR, da Silva EA, Santos RA, Pupo MT, Emery FS, Furtado N (2013) Microbial transformation of beta-lapachone to its glycosides by Cunninghamella elegans ATCC 10028b. Phytochem Lett 6:657–661

    Article  CAS  Google Scholar 

  • Peters FT, Drăgan C-A, Wilde DR, Meyer MR, Zapp J, Bureik M, Maurer HH (2007) Biotechnological synthesis of drug metabolites using human cytochrome P450 2D6 heterologously expressed in fission yeast exemplified for the designer drug metabolite 4′-hydroxymethyl-alpha-pyrrolidinobutyrophenone. Biochem Pharmacol 74:511–520

    Article  CAS  PubMed  Google Scholar 

  • Peters FT, Drăgan C-A, Kauffels A, Schwaninger AE, Zapp J, Bureik M, Maurer HH (2009a) Biotechnological synthesis of the designer drug metabolite 4′-hydroxymethyl-alpha-pyrrolidinohexanophenone in fission yeast heterologously expressing human cytochrome P450 2D6—a versatile alternative to multistep chemical synthesis. J Anal Toxicol 33:190–197

    Article  CAS  PubMed  Google Scholar 

  • Peters FT, Drăgan C-A, Schwaninger AE, Sauer C, Zapp J, Bureik M, Maurer HH (2009b) Use of fission yeast heterologously expressing human cytochrome P450 2B6 in biotechnological synthesis of the designer drug metabolite N-(1-phenylcyclohexyl)-2-hydroxyethanamine. Forensic Sci Int 184:69–73

    Article  CAS  PubMed  Google Scholar 

  • Pothuluri JV, Selby A, Evans FE, Freeman JP, Cerniglia CE (1995) Transformation of chrysene and other polycyclic aromatic hydrocarbon mixtures by the fungus Cunninghamella elegans. Can J Bot 73:S1025–S1033

    Article  CAS  Google Scholar 

  • Prior JE, Shokati T, Christians U, Gill RT (2010) Identification and characterization of a bacterial cytochrome P450 for the metabolism of diclofenac. Appl Microbiol Biotechnol 85:625–633

    Article  CAS  PubMed  Google Scholar 

  • Reinen J, van Leeuwen JS, Li YM, Sun LF, Grootenhuis PDJ, Decker CJ, Saunders J, Vermeulen NPE, Commandeur JNM (2011) Efficient screening of cytochrome P450 BM3 mutants for their metabolic activity and diversity toward a wide set of drug-like molecules in chemical space. Drug Metab Dispos 39:1568–1576

    Article  CAS  PubMed  Google Scholar 

  • Rentmeister A, Arnold FH, Fasan R (2009) Chemo-enzymatic fluorination of unactivated organic compounds. Nat Chem Biol 5:26–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rydevik A, Bondesson U, Thevis M, Hedeland M (2013a) Mass spectrometric characterization of glucuronides formed by a new concept, combining Cunninghamella elegans with TEMPO. J Pharm Biomed Anal 84:278–284

    Article  CAS  PubMed  Google Scholar 

  • Rydevik A, Thevis M, Krug O, Bondesson U, Hedeland M (2013b) The fungus Cunninghamella elegans can produce human and equine metabolites of selective androgen receptor modulators (SARMs). Xenobiotica 43:409–420

    Article  CAS  PubMed  Google Scholar 

  • Sariaslani FS, Kunz DA (1986) Induction of cytochrome-p-450 in Streptomyces griseus by soybean flour. Biochem Biophys Res Commun 141:405–410

    Article  CAS  PubMed  Google Scholar 

  • Sariaslani FS, Rosazza JP (1983) Novel biotransformations of 7-ethoxycoumarin by Streptomyces griseus. Appl Environ Microbiol 46:468–474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sawayama AM, Chen MMY, Kulanthaivel P, Kuo MS, Hemmerle H, Arnold FH (2009) A panel of cytochrome P450 BM3 variants to produce drug metabolites and diversify lead compounds. Chem Eur J 15:11723–11729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith RV, Rosazza JP (1974) Microbial models of mammalian metabolism—aromatic hydroxylation. Arch Biochem Biophys 161:551–558

    Article  CAS  PubMed  Google Scholar 

  • Taylor M, Lamb DC, Cannell R, Dawson M, Kelly SL (1999) Cytochrome P450105D1 (CYP105D1) from Streptomyces griseus: heterologous expression, activity, and activation effects of multiple xenobiotics. Biochem Biophys Res Commun 263:838–842

    Article  CAS  PubMed  Google Scholar 

  • Tracy TS, Rosenbluth BW, Wrighton SA, Gonzalez FJ, Korzekwa KR (1995) Role of cytochrome P450 2C9 and an allelic variant in the 4′-hydroxylation of (R)-flurbiprofen and (S)-flurbiprofen. Biochem Pharmacol 49:1269–1275

    Article  CAS  PubMed  Google Scholar 

  • Tracy TS, Marra C, Wrighton SA, Gonzalez FJ, Korzekwa KR (1996) Studies of flurbiprofen 4′-hydroxylation—additional evidence suggesting the sole involvement of cytochrome P450 2C9. Biochem Pharmacol 52:1305–1309

    Article  CAS  PubMed  Google Scholar 

  • Trower MK, Sariaslani FS, O’Keefe DP (1989) Purification and characterization of a soybean flour-induced cytochrome P450 from Streptomyces griseus. J Bacteriol 171:1781–1787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsotsou GE, Sideri A, Goyal A, Di Nardo G, Gilardi G (2012) Identification of mutant Asp251Gly/Gln307His of cytochrome P450 BM3 for the generation of metabolites of diclofenac, ibuprofen and tolbutamide. Chem Eur J 18:3582–3588

    Article  CAS  PubMed  Google Scholar 

  • Vail R, Homann M, Hanna I, Zaks A (2005) Preparative synthesis of drug metabolites using human cytochrome P450s 3A4, 2C9 and 1A2 with NADPH-P450 reductase expressed in Escherichia coli. J Ind Microbiol Biotechnol 32:67–74

    Article  CAS  PubMed  Google Scholar 

  • Wang RF, Cao WW, Khan AA, Cerniglia CE (2000) Cloning, sequencing, and expression in Escherichia coli of a cytochrome P450 gene from Cunninghamella elegans. FEMS Microbiol Lett 188:55–61

    Article  CAS  PubMed  Google Scholar 

  • Zhang DL, Yang YF, Leakey JEA, Cerniglia CE (1996) Phase I and phase II enzymes produced by Cunninghamella elegans for the metabolism of xenobiotics. FEMS Microbiol Lett 138:221–226

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cormac D. Murphy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, C.D. Drug metabolism in microorganisms. Biotechnol Lett 37, 19–28 (2015). https://doi.org/10.1007/s10529-014-1653-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1653-8

Keywords

Navigation