Skip to main content
Log in

Fitness-related changes in laboratory populations of the egg parasitoid Trichogramma galloi and the implications of rearing on factitious hosts

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

In this study, we used the specialist egg parasitoid Trichogramma galloi Zucchi, 1988 (Hymenoptera: Trichogrammatidae) to test whether development over multiple generations on a factitious host would later influence performance on the target pest. We also investigated possible adaptations to laboratory rearing conditions by monitoring over 50 and 46 generations life history traits of T. galloi populations maintained on the natural [Diatraea saccharalis (Fabr., 1794) (Lepidoptera: Crambidae)] and factitious host [Ephestia kuehniella (Zeller, 1879) (Lepidoptera: Pyralidae)], respectively. We detected a possible sign of adaptation to rearing conditions in early generations on the emergence of the population maintained on the natural host. We also verified a reduction in fecundity and emergence of parasitoids maintained on the factitious host when fitness was evaluated on the natural host, confirming the prediction that the use of factitious hosts can lower fitness on the target pest. The importance of these results for the effectiveness of biological control programs is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allendorf FW (1986) Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol 5:181–190

    Article  Google Scholar 

  • Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell, Oxford

    Google Scholar 

  • Antolin MF, Bjorksten TA, Vaughn TT (2006) Host-related fitness trade-offs in a presumed generalist parasitoid, Diaeretiella rapae (Hymenoptera: Aphidiidae). Ecol Entomol 31:242–254

    Article  Google Scholar 

  • Araki H, Cooper B, Blouin MS (2007) Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318:100–103

    Article  CAS  PubMed  Google Scholar 

  • Bartlett AC (1984) Genetic changes during insect domestication. In: King EG, Leppla NC (eds) Advances and challenges in insect rearing. US Department of Agriculture, Louisiana, pp 2–8

    Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Bigler F (1994) Quality control in Trichogramma production. In: Wajnberg E, Hassan SA (eds) Biological control with egg parasitoids. CAB International, Wallingford, pp 93–110

    Google Scholar 

  • Bigler F, Meyer A, Bosshart S (1987) Quality assessment in Trichogramma maidis Pintureau et Voegelé reared from eggs of the factitious hosts Ephestia kuehniella Zell. and Sitotroga cerealella (Olivier). J Appl Entomol 104:340–353

    Article  Google Scholar 

  • Boivin G (2010) Phenotypic plasticity and fitness in egg parasitoids. Neotrop Entomol 39:457–463

    Article  PubMed  Google Scholar 

  • Bowen WR, Stern VM (1966) Effect of temperature on the production of males and sexual mosaics in a uniparental race of Trichogramma semifumatum (Hymenoptera: Trichogrammatidae). Ann Entomol Soc Am 59:823–834

    Article  Google Scholar 

  • Cônsoli FL, Parra JRP (1996) Biology of Trichogramma galloi and T. pretiosum (Hymenoptera: Trichogrammatidae) reared in vitro and in vivo. Ann Entomol Soc Am 89:828–834

    Article  Google Scholar 

  • Corbet SA (1985) Insect chemosensory responses: a chemical legacy hypothesis. Ecol Entomol 10:143–153

    Article  Google Scholar 

  • Dias NS, Parra JRP, Lima TCC (2008) Seleção de hospedeiro alternativo para três espécies de tricogramatídeos neotropicais. Pesq Agropec Bras 43:1467–1473

    Article  Google Scholar 

  • Fauvergue X, Vercken E, Malausa T, Hufbauer RA (2012) The biology of small, introduced populations, with special reference to biological control. Evol Appl 5:424–443

    Article  PubMed  PubMed Central  Google Scholar 

  • Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand Oaks

    Google Scholar 

  • Frankham R (2008) Genetic adaptation to captivity in species conservation programs. Mol Ecol 17:325–333

    Article  PubMed  Google Scholar 

  • Frankham R, Loebel DA (1992) Modeling problems in conservation genetics using captive Drosophila populations: rapid genetic adaptation to captivity. Zoo Biol 11:333–342

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gandolfi M, Mattiacci L, Dorn S (2003) Preimaginal learning determines adult response to chemical stimuli in a parasitic wasp. Proc Biol Sci 270:2623–2629

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilligan DM, Frankham R (2003) Dynamics of genetic adaptation to captivity. Conserv Genet 4:189–197

    Article  Google Scholar 

  • Giunti G, Canale A, Messing RH, Donati E, Stefanini C, Michaud JP, Benelli G (2015) Parasitoid learning: current knowledge and implications for biological control. Biol Control 90:208–219

    Article  Google Scholar 

  • Hassan SA (1993) The mass rearing and utilization of Trichogramma to control lepidopterous pests: achievements and outlook. Pestic Sci 37:387–391

    Article  Google Scholar 

  • Hassan SA, Guo MF (1991) Selection of effective strains of egg parasites of the genus Trichogramma (Hym., Trichogrammatidae) to control the European corn borer Ostrinia nubilalis Hb. (Lep., Pyralidae). J Appl Entomol 111:335–341

    Article  Google Scholar 

  • Henry LM, Roitberg BD, Gillespie DR (2008) Host-range evolution in Aphidius parasitoids: fidelity, virulence and fitness trade-offs on an ancestral host. Evolution 62:689–699

    Article  PubMed  Google Scholar 

  • Hopper KR, Roush RT, Powell W (1993) Management of genetics of biological control introductions. Annu Rev Entomol 38:27–51

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  • Jones TS, Bilton AR, Mak L, Sait SM (2015) Host switching in a generalist parasitoid: contrasting transient and transgenerational costs associated with novel and original host species. Ecol Evol 5(2):459–465

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaiser L, Pham-Delegue MH, Masson C (1989) Behavioural study of plasticity in host preferences of Trichogramma maidis (Hym.: Trichogrammatidae). Physiol Entomol 14:53–60

    Article  Google Scholar 

  • Lenth RV (2016) Least-squares means: The R package lsmeans. J Stat Softw 69(1):1–33

    Article  Google Scholar 

  • Li L (1994) Worldwide use of Trichogramma for biological control on different crops: A survey. In: Wajnberg E, Hassan SA (eds) Biological control with egg parasitoids. Cab International, Wallingford, pp 37–51

    Google Scholar 

  • Li L, Wei W, Liu Z, Sun J (2010) Host adaptation of a gregarious parasitoid Sclerodermus harmandi in artificial rearing. BioControl 55:465–472

    Article  Google Scholar 

  • Lopes JRS, Parra JRP (1991) Efeito da idade de ovos do hospedeiro natural e alternativo no desenvolvimento e parasitismo de duas espécies de Trichogramma. Rev Agric 66:221–244

    Google Scholar 

  • Margan SH, Nurthen RK, Montgomery ME, Woodworth LM, Lowe EH, Briscoe DA, Frankham R (1998) Single large or several small? Population fragmentation in the captive management of endangered species. Zoo Biol 17:467–480

    Article  Google Scholar 

  • Parra JRP (1997) Técnicas de criação de Anagasta kuehniella, hospedeiro alternativo para produção de Trichogramma. In: Parra JRP, Zucchi RA (eds) Trichogramma e o controle biológico aplicado. FEALQ, Piracicaba, pp 121–150

    Google Scholar 

  • Parra JRP (2010) Mass rearing of egg parasitoids for biological control programs. In: Cônsoli FL, Parra JRP, Zucchi RA (eds) Egg parasitoids in agroecosystems with emphasis on Trichogramma. Springer, Dordrecht, pp 267–292

    Google Scholar 

  • Parra JRP, Zucchi AR (2004) Trichogramma in Brazil: feasibility of use after twenty years of research. Neotrop Entomol 33:271–281

    Article  Google Scholar 

  • Parra JRP, Botelho PSM, Pinto AS (2010) Biological control of pests as a key component for sustainable sugarcane production. In: Cortez LAB (ed) Sugarcane bioethanol: R&D for productivity and sustainability. Blucher, São Paulo, pp 441–450

    Google Scholar 

  • Pratissoli D, Oliveira HN, Gonçalves JR, Zanuncio JC, Holtz AM (2004) Changes in biological characteristics of Trichogramma pretiosum (Hym.: Trichogrammatidae) reared on eggs of Anagasta kuehniella (Lep.: Pyralidae) for 23 generations. Biocontrol Sci Technol 14:313–319

    Article  Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Ruiz-Montoya L, Núñez-Farfán J (2013) Testing local host adaptation and phenotypic plasticity in a herbivore when alternative related host plants occur sympatrically. PLoS ONE 8(11):e79070. doi:10.1371/journal.pone.0079070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SM (1996) Biological control with Trichogramma: advances, successes, and potential of their use. Annu Rev Entomol 41:375–406

    Article  CAS  PubMed  Google Scholar 

  • Stein CP, Parra JRP (1987) Uso da radiação ultravioleta para inviabilizar ovos de Anagasta kuehniella (Zeller, 1879) visando estudos com Trichogramma. An Soc Entomol Bras 16:229–234

    Google Scholar 

  • Tayeh A, Estoup A, Laugier G, Loiseau A, Turgeon J, Toepfer S, Facon B (2012) Evolution in biocontrol strains: insight from the harlequin ladybird Harmonia axyridis. Evol Appl 5:481–488

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorpe WH, Jones FGW (1937) Olfactory conditioning in a parasitic insect and its relation to the problem of host selection. Proc R Soc Lond B 124:56–81

    Article  Google Scholar 

  • Van Bergeijk KE, Bigler F, Kaashoek NK, Pak GA (1989) Changes in host acceptance and host suitability as an effect of rearing Trichogramma maidis on a factitious host. Entomol Exp Appl 52:229–238

    Article  Google Scholar 

  • Wajnberg E, Hassan SA (1994) Biological control with egg parasitoids. CAB International, Wallingford

  • Woodworth LM, Montgomery ME, Briscoe DA, Frankham R (2002) Rapid genetic deterioration in captive populations: causes and conservation implications. Conserv Genet 3:277–288

    Article  CAS  Google Scholar 

  • Zepeda-Paulo FA, Ortiz-Martínez SA, Figueroa CC, Lavandero B (2013) Adaptive evolution of a generalist parasitoid: implications for the effectiveness of biological control agents. Evol Appl 6:983–999

    Article  PubMed  PubMed Central  Google Scholar 

  • Zucchi RA, Querino RB, Monteiro RC (2010) Diversity and hosts of Trichogramma in the New World, with emphasis in South America. In: Cônsoli FL, Parra JRP, Zucchi RA (eds) Egg parasitoids in agroecosystems with emphasis on Trichogramma. Springer, Dordrecht, pp 191–218

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Janet W. Reid (JWR Associates) for English and technical corrections and Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (Processo: 140539/2012-3) for granting a scholarship to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Bertin.

Ethics declarations

Conflict of interests

The authors declare no conflict of interests.

Additional information

Handling Editor: Stefano Colazza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertin, A., Pavinato, V.A.C. & Parra, J.R.P. Fitness-related changes in laboratory populations of the egg parasitoid Trichogramma galloi and the implications of rearing on factitious hosts. BioControl 62, 435–444 (2017). https://doi.org/10.1007/s10526-017-9795-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-017-9795-y

Keywords

Navigation