Skip to main content
Log in

Influence of the application methods and doses on the susceptibility of black vine weevil larvae Otiorhynchus sulcatus to Metarhizium anisopliae in field-grown strawberries

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Entomopathogenic fungi are commercially available for the control of insect pests, including the black vine weevil (BVW) Otiorhynchus sulcatus Fabricius (Coleoptera:Curculionidae). However, Metarhizium anisopliae (Metsch.) Sorokin (Clavicipitaceae) has not been used to control BVW in field-grown strawberries. Field trials were conducted in different locations in the UK during 2009–2010 to evaluate the different formulations (granular vs. drench) and application methods (premixed, drench, bare root treatment) of commercial strain of M. anisopliae Met52® (=F52), the entomopathogenic nematodes and the organophosphate insecticide Cyren® against BVW. The highest dose (1014 cfu ha−1) tested provided significantly better control than the intermediate (1013 cfu ha−1) or low (1012 cfu ha−1) doses. BVW larval control at the high, intermediate and low doses was 71–96, 40–75 and 6–11 %, respectively. Premixing, drench or bare root treatment with Met52® gave similar levels of BVW control. Irrespective of the application methods or soil types, the high dose rate of Met52® provided the best control. Significantly high larval control was achieved (78–97 %) when chlorpyrifos was applied at planting than eight weeks post planting (53 %). There were significant differences in BVW control between Met52® (88 %) and reduced doses of Heterorhabditis bacteriophora Poinar (20–29 %) or Steinernema kraussei Steiner (39–75 %) when applied alone. However, when used together, low dose of S. kraussei and Met52® provided 100 % control of BVW larvae. This study shows that Met52® has considerable potential for the control of BVW larvae in commercial field-grown strawberry, thereby offering an environmentally benign alternative to chemical insecticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anon (2009) UK berry growers welcome victory for polytunnels http://www.britishsummerfruits.co.uk. Accessed 4 April 2009

  • Ansari MA, Shah FA, Whittaker M, Prasad M, Butt TM (2007) Control of western flower thrips (Frankliniella occidentalis) pupae with Metarhizium anisopliae in peat and peat alternative growing media. Biol Control 40:293–297

    Article  Google Scholar 

  • Ansari MA, Brownbridge M, Shah FA, Butt TM (2008a) Efficacy of entomopathogenic fungi against soil-dwelling life stages of western flower thrips, Frankliniella occidentalis (Thysanoptera:Thripidae) in plant growing media. Entomol Exp Appl 127:80–87

    Article  Google Scholar 

  • Ansari MA, Shah FA, Butt TM (2008b) Combined use of entomopathogenic nematodes and Metarhizium anisopliae as a new approach for black vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae) control. Entomol Exp Appl 129:340–347

    Article  Google Scholar 

  • Ansari MA, Shah FA, Butt TM (2010) The entomopathogenic nematode Steinernema kraussei and Metarhizium anisopliae work synergistically in controlling overwintering larvae of the black vine weevil, Otiorhynchus sulcatus, in strawberries growbags. Biocontrol Sci Tech 20:99–105

    Article  Google Scholar 

  • Bedding RA, Akhurst RJ (1975) A simple technique for the detection of insect pathogens nematodes in soil. Nematologica 21:109–110

    Article  Google Scholar 

  • Bruck DJ (2005) Ecology of Metarhizium anisopliae in soilless potting media and the rhizosphere: implications for pest management. Biol Control 32:155–163

    Article  Google Scholar 

  • Bruck DJ (2010) Fungal entomopathogens in the rhizosphere. BioControl 55:103–112

    Article  Google Scholar 

  • Bruck DJ, Donahue KM (2007) Persistence of Metarhizium anisopliae incorporated into soilless potting media for control of the black vine weevil, Otiorhynchussulcatus in container grown ornamentals. J Invertebr Pathol 95:146–150

    Article  PubMed  Google Scholar 

  • Butler JL, Williams MA, Bottomley PJ, Myrold DD (2003) Microbial community dynamics associated with rhizosphere carbon flow. Appl Environ Microbiol 69:6793–6800

    Article  PubMed  CAS  Google Scholar 

  • Cross JV, Burgess CM (1997) Localised insecticide treatment for the control of vine weevil larvae (Otiorhynchus sulcatus) on field-grown strawberry. Crop Prot 16:565–574

    Article  CAS  Google Scholar 

  • Demchak K (2009) Small fruit production in high tunnels. HortTechnology 19:44–49

    Google Scholar 

  • Evenhuis HH (1978) Bionomics and control of the black vine weevil Otiorhynchus sulcatus. Mededelingen van de Faculteit landbouwwetenschappen, Rijksuniversiteit Gent 43:607–611

    Google Scholar 

  • Fitters PFI, Dunne R, Griffin CT (2001) Improved control of Otiorhynchus sulcatus at 9 °C by cold-stored Heterorhabditis megidis UK211. Biocontrol Sci Tech 11:483–492

    Article  Google Scholar 

  • Gill S, Lutz J, Shrewsbury P, Raupp M (2001) Evaluation of biological and chemical control methods for black vine weevil, Otiorhynchus sulcatus (Fabricius) (Coleoptera: Curculionidae), in container grown perennials. J Environ Hort 19:166–170

    Google Scholar 

  • Haukeland S, Lola-Luz T (2010) Efficacy of the entomopathogenic nematodes Steinernema kraussei and Heterorhabditis megidis against the lack vine weevil Otiorhynchus sulcatus in open field-grown strawberry plants. Agr Forest Entomol 12:363–369

    Article  Google Scholar 

  • Hu G, Leger RJ (2002) Field trials using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Appl Environ Microbiol 68:6383–6387

    Article  PubMed  CAS  Google Scholar 

  • Logan DP, Robertson LN, Milner RJ (2000) Review of the development of Metarhizium anisopliae as a microbial insecticide BioCane™, for control of greyback canegrub Dermolepida albohirtum, Waterhouse (Coleoptera: Scarabaeidae) in Queensland sugarcane. IOBC/WPRS Bull 23(8):131–137

    Google Scholar 

  • Lola-Luz T, Downes M (2007) Biological control of black vine weevil Otiorhynchus sulcatus in Ireland using Heterorhabditis megidis. Biol Control 40:314–319

    Article  Google Scholar 

  • Long SJ, Richardson PN, Fenlon JS (2000) Influence of temperature on infectivity of entomopathogenic nematodes (Steinernema and Heterorhabditis spp.) to larvae and pupae of the vine weevil Otiorhynchus sulcatus (Coleoptera: Curculionidae). Nematology 2:309–317

    Article  Google Scholar 

  • Moorhouse ER, Charnley AK, Gillespie AT (1992) A review of the biology and control of the vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae). Ann Appl Biol 121:431–454

    Article  Google Scholar 

  • Moorhouse ER, Gillespie AT, Charnley AK (1993) Application of Metarhizium anisopliae (Metsch.) Sor. conidia to control Otiorhynchus sulcatus (F.) (Coleoptera: Curculionidae) larvae on glasshouse pot plants. Ann Appl Biol 122:623–636

    Article  Google Scholar 

  • Moorhouse ER, Gillespie AT, Charnley AK (1994) The influence of temperature on the susceptibility of vine weevil, Otiorhynchus sulcatus (Fabricius) (Coleoptera: Curculionidae), larvae to (Deuteromycotina: Hyphomycetes). Ann Appl Biol 124:185–193

    Article  Google Scholar 

  • Scheepmaker JWA, Butt TM (2010) Natural and released inoculum levels of entomopathogenic fungal biocontrol agents in soil in relation to risk assessment and in accordance with EU regulations. Biocontrol Sci Tech 20:603–662

    Article  Google Scholar 

  • Shah FA, Ansari MA, Prasad M, Butt TM (2007) Evaluation of black vine weevil (Otiorhynchus sulcatus) control strategies using Metarhizium anisopliae with sublethal doses of insecticides in disparate horticultural growing media. Biol Control 40:246–252

    Article  CAS  Google Scholar 

  • Shah FA, Hutwimmer S, Greig C, Dyson P, Strasser H, Butt TM (2010) Influence of natural microbial populations in horticultural growing media on the efficacy of Metarhizium anisopliae. Fungal Ecol 3:185–194

    Article  Google Scholar 

  • SPSS Inc. (2007) SPSS Statistical Software CD-ROM Version 16.0 for Windows. SPSS Inc, Chicago Illinois, USA

    Google Scholar 

  • van Tol RWHM, van Dijk N, Sabelis MW (2004) Host plant preference and performance of the vine weevil Otiorhynchus sulcatus. Agr Forest Entomol 6:267–278

    Article  Google Scholar 

  • Willmott DM, Hart AJ, Long SJ, Edmondson RN, Richardson PN (2002) Use of cold-active entomopathogenic nematode Steinernema kraussei to control overwintering larvae of the black vine weevil Otiorhynchus sulcatus (Coleoptera: Curculionidae) in outdoor strawberry plants. Nematology 4:925–932

    Article  Google Scholar 

  • Wittwer SH, Castilla N (1995) Protected cultivation of horticultural crops worldwide. HortTechnology 5:6–23

    Google Scholar 

Download references

Acknowledgments

We thank the Horticultural Development Company, Novozymes Biologicals and Koppert Biological Systems for financial support. We also thank Becker Underwood, e-nema, and Novozymes Biologicals, for providing S. kraussei, H. bacteriophora and M. anisopliae, respectively, for experimental trials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minshad A. Ansari.

Additional information

Handling Editor: Ralf Ehlers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansari, M.A., Butt, T.M. Influence of the application methods and doses on the susceptibility of black vine weevil larvae Otiorhynchus sulcatus to Metarhizium anisopliae in field-grown strawberries. BioControl 58, 257–267 (2013). https://doi.org/10.1007/s10526-012-9491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-012-9491-x

Keywords

Navigation