Skip to main content
Log in

The effect of mitochondrial complex I inhibitor on longevity of short-lived and long-lived seed beetles and its mitonuclear hybrids

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Mitochondria are suggested to play a central role in ageing and evolution of longevity. Gradual decline in mitochondrial function during ageing and concomitant increase in production of reactive oxygen species (ROS) leads to oxidative damage of macromolecules and impairment of ATP synthesis. To assess relationship between ageing and oxidative stress resistance we exposed different longevity lines of the seed beetle (Acanthoscelides obtectus) to four concentrations of tebufenpyrad, mitochondrial complex I inhibitor. Complex I is one of main sites of ROS production during normal respiration and its inhibition elevates oxidative stress. Our results showed that 24 h of exposure to tebufenpyrad decreased survival and post-stress longevity due to increased baseline mortality. Higher resistance was recorded in beetles from lines selected for late reproduction and extended longevity (L) than in early reproducing beetles (E). Also, females were more resistant than males. Since complex I is under dual genetic control, our second aim was to disentangle relative contribution of nuclear and mitochondrial genes to the variation in longevity. We used crossed combinations of distinct mitochondrial and nuclear genotypes (E × L, L × E) and compared them to control hybrids where mitochondrial genome was “transplanted” onto the original background (E × E, L × L). Our study revealed significant effect of nucleus, i.e. higher survival and post-stress longevity in beetles harbouring L nucleus. Mitochondrion effect was significant only within L nuclear background where E mitochondrion gave advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andreyev AYu, Kushnareva YuE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry (Moscow) 70:200–214

    Article  CAS  Google Scholar 

  • Arking R, Buck S, Novoseltev VN, Hwangbo D-S, Lane M (2002) Genomic plasticity, energy allocations, and the extended longevity phenotypes of Drosophila. Ageing Res Rev 1:209–228

    Article  CAS  PubMed  Google Scholar 

  • Arnqvist G, Dowling DK, Eady P, Gay L, Tregenza T, Tuda M, Hosken DJ (2010) Genetic architecture of metabolic rate: environment specific epistasis between mitochondrial and nuclear genes in an insect. Evolution 64:3354–3363

    Article  CAS  PubMed  Google Scholar 

  • Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744

    Article  PubMed  Google Scholar 

  • Blier PU, Dufresne F, Burton RS (2001) Natural selection and the evolution of mtDNA-encoded peptides: evidence for intergenomic co-adaptation. Trends Genet 17:400–406

    Article  CAS  PubMed  Google Scholar 

  • Bokov A, Chaudhuri A, Richardson A (2004) The role of oxidative damage and stress in aging. Mech Ageing Dev 125:811–826

    Article  CAS  PubMed  Google Scholar 

  • Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radical Bio Med 37:755–767

    Article  CAS  Google Scholar 

  • Bratić I, Trifunović A (2010) Mitochondrial energy metabolism and ageing. Biochim Biophys Acta 1797:961–967

  • Budovsky A, Abramovich A, Cohen R, Chalifa-Caspi V, Fraifel V (2007) Longevity network: construction and implications. Mech Ageing Dev 128:117–124

    Article  CAS  PubMed  Google Scholar 

  • Camus MF, Clancy DJ, Dowling DK (2012) Mitochondria, maternal inheritance and male aging. Curr Biol 22:1717–1721

    Article  CAS  PubMed  Google Scholar 

  • Copeland JM, Cho J, Lo T Jr, Hur JH, Bahadorani S, Arabyan T, Rabie J, Soh J, David W, Walker DW (2009) Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr Biol 19:1591–1598

    Article  CAS  PubMed  Google Scholar 

  • Curtis C, Landis GM, Folk D, Wehr NB, Hoe N, Waskar M, Abdueva D, Skvortsov D, Ford D, Luu A, Badrinath A, Levine RL, Bradley TJ, Tavaré S, Tower J (2007) Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes. Genome Biol 8:R262

    Article  PubMed Central  PubMed  Google Scholar 

  • Das J (2006) The role of mitochondrial respiration in physiological and evolutionary adaptation. BioEssays 28:890–901

    Article  CAS  PubMed  Google Scholar 

  • Degli Esposti M (1998) Inhibitors of NADH-ubiquinone reductase: an overview. Biochim Biophys Acta 1364:222–235

    Article  CAS  PubMed  Google Scholar 

  • Djawdan M, Sugiyama TT, Schlaeger LK, Bradley TJ, Rose MR (1996) Metabolic aspects of the trade-off between fecundity and longevity in Drosophila melanogaster. Physiol Zool 69:1176–1195

  • Dowling DK, Simmons LW (2009) Reactive oxygen species as universal constraints in life-history evolution. Proc R Soc 276B:1737–1745

    Article  Google Scholar 

  • Dowling DK, Abiega KC, Arnqvist G (2007) Temperature-specific outcomes of cytoplasmic-nuclear interactions on egg-to-adult development time in seed beetles. Evolution 61:194–201

    Article  PubMed  Google Scholar 

  • Dowling DK, Friberg U, Lindell J (2008) Evolutionary implications of non-neutral mitochondrial genetic variation. Trends Ecol Evol 23:546–554

    Article  PubMed  Google Scholar 

  • Ellison CK, Burton RS (2006) Disruption of mitochondrial function in interpopulation hybrids of Tigriopus californicus. Evolution 60:1382–1391

    Article  CAS  PubMed  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  • Gemmell NJ, Metcalf VJ, Allendorf FW (2004) Mother’s curse: the effect of mtDNA on individual fitness and population viability. Trends Ecol Evol 19:238–244

    Article  PubMed  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical radiation chemistry. J Gerontol 11:298–300

    Article  CAS  PubMed  Google Scholar 

  • Harman D (1972) The biologic clock: the mitochondria? J Am Geriatrics Soc 20:145–147

    CAS  Google Scholar 

  • Hirst J, Carroll J, Fearnley IM, Shannon RJ, Walker JE (2003) The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim Biophys Acta 1604:135–150

    Article  CAS  PubMed  Google Scholar 

  • Innocenti P, Morrow EH, Dowling DK (2011) Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution. Science 332:845–848

    Article  CAS  PubMed  Google Scholar 

  • Jacobs HT (2003) The mitochondrial theory of aging: dead or alive? Aging Cell 2:11–17

    Article  CAS  PubMed  Google Scholar 

  • James AC, Ballard JWO (2003) Mitochondrial genotype affects fitness in Drosophila simulans. Genetics 164:187–194

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katewa SD, Ballard WO (2007) Sympatric Drosophila simulans flies with distinct mtDNA show age related differences in mitochondrial metabolism. Insect Biochem Mol Biol 37:923–932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim H-J, Morrow G, Westwood JT, Michaud S, Tanguay RM (2010) Gene expression profiling implicates OXPHOS complexes in lifespan extension of flies over-expressing a small mitochondrial chaperone, Hsp22. Exp Gerontol 45:611–620

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood TBL, Kowald A (2012) The free-radical theory of ageing—older, wiser and still alive. BioEssays 34:692–700

    Article  CAS  PubMed  Google Scholar 

  • Krementsova AV, Roshina NV, Tsybul’ko EA, Rybina OY, Symonenko AV, Pasyukova EG (2012) Reproducible effects of the mitochondria-targeted plastoquinone derivative SkQ1 on Drosophila melanogaster lifespan under different experimental scenarios. Biogerontology 13:595–607

    Article  CAS  PubMed  Google Scholar 

  • Kuang J, Ebert PR (2012) The failure to extend lifespan via disruption of complex II is linked to preservation of dynamic control of energy metabolism. Mitochondrion 12:280–287

    Article  CAS  PubMed  Google Scholar 

  • Kuether K, Arking R (1999) Drosophila selected for extended longevity are more sensitive to heat shock. Age 22:175–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lambert AJ, Buckingham JA, Boysen HM, Brand MD (2010) Low complex I content explains the low hydrogen peroxide production rate of heart mitochondria from the long-lived pigeon, Columba livia. Aging Cell 9:78–91

    Article  CAS  PubMed  Google Scholar 

  • Lane N (2011) Mitonuclear match: optimizing fitness and fertility over generations drives ageing within generations. BioEssays 33:860–869

    Article  CAS  PubMed  Google Scholar 

  • Lazarević J, Tucić N, Šešlija Jovanović D, Večera J, Kodrik D (2012) The effects of selection for early and late reproduction on metabolite pools in Acanthoscelides obtectus Say. Insect Sci 19:303–314

    Article  Google Scholar 

  • Lazarević J, Đorđević M, Stojković B, Tucić N (2013a) Resistance to prooxidant agent paraquat in the short- and long-lived lines of the seed beetle (Acanthoscelides obtectus). Biogerontology 14:141–152

    Article  PubMed  Google Scholar 

  • Lazarević J, Stojković B, Tucić N (2013b) Sexual dimorphism in insect longevity: insights from experimental evolution. In: Geldani RM, Davin MA (eds) Sexual selection: evolutionary perspectives, mating strategies and long-term effects on genetic variation. Nova Science Publisher, New York, pp 1–44

    Google Scholar 

  • Le Bourg É (2009) Hormesis, aging and longevity. Biochim Biophys Acta 1790:1030–1039

    Article  PubMed  Google Scholar 

  • Min KJ, Tatar M (2006) Restriction of amino acids extends lifespan in Drosophila melanogaster. Mech Ageing Dev 127:643–646

    Article  CAS  PubMed  Google Scholar 

  • Miquel J, Economos AC, Fleming J, Johnson JE (1980) Mitochondrial role in cell aging. Exp Gerontol 15:575–591

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi-Bardbori A, Ghazi-Khansari M (2008) Alternative electron acceptors: proposed mechanism of paraquat mitochondrial toxicity. Environ Toxicol Phar 26:1–5

    Article  CAS  Google Scholar 

  • Morrow G, Tanguay RM (2008) Mitochondria and ageing in Drosophila. Biotechnol J 3:728–739

    Article  CAS  PubMed  Google Scholar 

  • O’Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci 89:2699–2702

    Article  PubMed Central  PubMed  Google Scholar 

  • Pérez VI, Bokov A, Van Remmen H, Mele J, Ran Q, Ikeno Y, Richardson A (2009) Is the oxidative stress theory of aging dead? Biochim Biophys Acta 179:1005–1014

    Article  Google Scholar 

  • Pletcher SD (1999) Model fitting and hypothesis testing for age-specific mortality data. J Evol Biol 12:430–439

    Article  Google Scholar 

  • Prasad NG, Joshi A (2003) What have two decades of laboratory life-history evolution studies on Drosophila melanogaster taught us? J Genet 82:45–46

    Article  CAS  PubMed  Google Scholar 

  • Pujol C, Bratić-Hench I, Šumakovic M, Hench J, Mourier A, Baumann L, Pavlenko V, Trifunović A (2013) Succinate dehydrogenase upregulation destabilize complex I and limits the lifespan of gas-1 mutant. PLoS One 8:e59493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rand DM, Haney RA, Fry AJ (2004) Cytonuclear coevolution: the genomics of cooperation. Trends Ecol Evol 19:645–653

    Article  PubMed  Google Scholar 

  • Rand DM, Fry A, Sheldahl L (2006) Nuclear-mitochondrial epistasis and Drosophila aging: introgression of Drosophila simulans mtDNA modifies longevity in D. melanogaster nuclear backgrounds. Genetics 172:329–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rattan SIS (2012) Biogerontology: from here to where? The Lord Cohen Medal Lecture—2011. Biogerontology 13:83–91

    Article  PubMed  Google Scholar 

  • Ristow M, Zarse K (2010) How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 45:410–418

    Article  CAS  PubMed  Google Scholar 

  • Sanz A, Fernández-Ayala DJM, Stefanatos RKA, Jacobs HT (2010) Mitochondrial ROS production correlates with, but does not directly regulate lifespan in Drosophila. Aging 2:200–223

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarup P, Loeschcke V (2011) Life extension and the position of the hormetic zone depends on sex and genetic background in Drosophila melanogaster. Biogerontology 12:109–117

    Article  PubMed  Google Scholar 

  • SAS Institute, Inc. (2010) The SAS system for windows, release 9.3. SAS Institute, Cary

    Google Scholar 

  • Schuler F, Casida JE (2001) The insecticide target in the PSST subunit of complex I. Pest Manag Sci 57:932–940

    Article  CAS  PubMed  Google Scholar 

  • Šešlija D (2005) Analysis of the selection effects on fitness components in the bean weevil (Acanthoscelides obtectus). Doctoral dissertation, University of Belgrade, Belgrade

  • Šešlija D, Blagojević D, Spasić M, Tucić N (1999) Activity of superoxide dismutase and catalase in the bean weevil (Acanthoscelides obtectus) selected for postponed senescence. Exp Gerontol 34:185–195

    Article  PubMed  Google Scholar 

  • Sherer TB, Richardson JR, Testa CM, Seo BB, Panov AV, Yagi T, Matsuno-Yagi A, Miller GW, Greenamyre JT (2007) Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease. J Neurochem 100:1469–1479

    CAS  PubMed  Google Scholar 

  • Sohal RS (2002) Oxidative stress hypothesis of aging. Free Radic Biol Med 33:573–574

    Article  CAS  PubMed  Google Scholar 

  • Sohal RS, Orr WC (2012) The redox stress hypothesis of aging. Free Radic Biol Med 52:539–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sőti C, Csermely P (2007) Aging cellular networks: chaperones as major participants. Exp Gerontol 42:113–119

    Article  PubMed  Google Scholar 

  • Sriram A (2012) Effect of the reduction of respiratory complex I levels on Drosophila melanogaster lifespan. MS Thesis, Tampere University of Technology, Tampere

  • Stojković B, Savković U (2011) Gender differences in longevity in early and late reproduced lines of the seed beetle. Arch Biol Sci (Belgrade) 63:129–136

    Article  Google Scholar 

  • St-Pierre J, Buckingham AJ, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790

    Article  CAS  PubMed  Google Scholar 

  • Tower J (2009) Hsps and aging. Trends Endocrin Met 20:216–222

    Article  CAS  Google Scholar 

  • Tucić N, Gliksman I, Šešlija D, Milanović D, Mikuljanac S, Stojković O (1996) Laboratory evolution of longevity in the Bean weevil (Acanthoscelides obtectus). J Evol Biol 9:485–503

    Article  Google Scholar 

  • Tucić N, Šešlija D, Stanković V (2004) The short-term and long-term effects of parental age in the bean weevil (Acanthoscelides obtectus). Evol Ecol 18:187–201

    Article  Google Scholar 

  • Van Pottelberge S, Van Leeuwen T, Nauen R, Tirry L (2009) Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari: Tetranychidae). Bull Entomol Res 99:23–31

  • Vermeulen CJ, Loeschcke V (2007) Longevity and the stress response in Drosophila. Exp Gerontol 42:153–159

    Article  CAS  PubMed  Google Scholar 

  • Vettraino J, Buck S, Arking R (2001) Direct selection for paraquat resistance in Drosophila results in a different extended longevity phenotype. J Gerontol 56A:B415–B425

    Article  Google Scholar 

  • Willlett CS, Burton RS (2003) Environmental influences on epistatic interactions: viabilities of cytochrome c genotypes in interpopulation crosses. Evolution 57:2286–2292

    Article  Google Scholar 

  • Yashin AI, Cypser JW, Johnson TE, Michalski AI, Boyko SI, Vasili N, Novoseltsev VN (2002) Heat shock changes the heterogeneity distribution in populations of Caenorhabditis elegans: does it tell us anything about the biological mechanism of stress response? J Gerontol Biol Sci 57A:B83–B92

    Article  Google Scholar 

  • Zera AJ, Harshman LG (2010) Laboratory selection studies of life-history physiology in insects. In: Garland T Jr, Rose MR (eds) Experimental evolution: concepts, methods, and applications of selection experiments. University of California Press, Berkeley, pp 217–262

    Google Scholar 

  • Zid BM, Rogers A, Katewa SD, Vargas MA, Kolipinski M, Lu TA, Benzer S, Pankaj Kapahi P (2009) 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139:149–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Editor and an anonymous referee for constructive comments and helpful suggestions. This work was supported by Ministry of Education, Science and Technological Development, Grant No. 173007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darka Šešlija Jovanović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jovanović, D.Š., Đorđević, M., Savković, U. et al. The effect of mitochondrial complex I inhibitor on longevity of short-lived and long-lived seed beetles and its mitonuclear hybrids. Biogerontology 15, 487–501 (2014). https://doi.org/10.1007/s10522-014-9520-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-014-9520-5

Keywords

Navigation