Skip to main content
Log in

Non-linear static procedures applied to high-rise residential URM buildings

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

In this work, the vulnerability of an unreinforced masonry building, evaluated on the one hand by using the incremental dynamic analysis, and on the other hand by using nine representative non-linear static incremental procedures, is compared. For comparison reasons among the different non-linear static procedures, the obtained incremental dynamic analyses results are used as reference values. The aim of this analysis is to evaluate the applicability and reliability of the diverse non-linear static procedures for unreinforced masonry buildings, and to propose modifications oriented to improve their use in this typology of structures. For this purpose, a fully representative unreinforced masonry building of the dominating building type in the Eixample district of Barcelona, is analyzed. Furthermore, the conditional spectrum approach procedure has been applied with the aim to conveniently define the seismic demand. Regarding the definition of the fragility curves, two different methodologies were used for each non-linear static procedure and incremental dynamic analyzes. Subsequently, the corresponding damage indices as well as the damage curves were calculated and compared for the different considered peak ground acceleration values. The results of this comparison seem to confirm that the damage curves obtained by performing the NSP and by applying the Risk-UE methodology overestimate the damage corresponding to low values of the PGA and underestimate the damage for higher values of the PGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abrahamson NA, Al Atik L (2010) Scenario spectra for design ground motions and risk calculation. In: 9th US national and 10th Canadian conference on earthquake engineering, Toronto

  • ATC-40 (1996) Seismic evaluation and retrofit of concrete buildings. California Seismic Safety Commission, California

    Google Scholar 

  • Baker JW (2014) Code supplement to efficient analytical fragility function using dynamic structural analysis. http://purl.stanford.edu/sw589ts9300

  • Baker JW (2015) Efficient analytical fragility function fitting using dynamic structural analysis. Earthq Spectra 31(1):579–599

  • Barbat A (1982) Cálculo sísmico de estructuras. Editores Técnicos Asociados, Barcelona

    Google Scholar 

  • Barbat A, Yépez F, Canas JA (1996) Damage scenarios simulation for risk assessment in urban zones. Earthq Spectra 2:371–394

    Article  Google Scholar 

  • Barbat A, Oller S, Vielma JC (2005) Cálculo y diseño sismorresistente de edificios: aplicación de la norma NCSE-02. In: Barbat A (ed) Monografías de Ingeniería Sísmica. Centro Internacional de Métodos Numéricos en Ingeniería, Barcelona

    Google Scholar 

  • Barbat AH, Pujades LG, Lantada N, Moreno R (2008) Seismic damage evaluation in urban areas using the capacity spectrum method: application to Barcelona. Soil Dyn Earthq Eng 28:851–865

    Article  Google Scholar 

  • Barbat A, Carreño ML, Pujades L, Lantada N, Cardona OD, Marulanda MC (2010) Seismic vulnerability and risk evaluartion methods for urban areas. A review with application to a pilot area. Struct Infrastruct Eng 6:17–38

    Article  Google Scholar 

  • Benedetti D, Petrini V (1984) Sulla vulnerabilità sismica degli edifici in muratura: proposta di un metodo di valutazione. L’Industria della Costruzioni, Roma

    Google Scholar 

  • Bernardini A (2000) The vulnerability of buildings -evaluation on a national scale of the seismic vulnerability of ordinary buildings. CNR-GNDT, Rome

    Google Scholar 

  • Busquets J, Corominas-Ayala M (2009) Cerdà i la Barcelona del futur: realitat versus projecte, Barcelona

  • CID J (1998). Zonación sísmica de la ciudad de Barcelona basada en métodos de simulación numérica de efectos locales. PhD, Universitat Politècnica de Catalunya, UPC

  • Centre De Cultura Contemporània De Barcelona (CCCB). Ordenanzas de edificación [Online]. Available: http://www.anycerda.org/web/es/arxiu-cerda/fitxa/ordenances-d-edificacio/329

  • C.S.LL.PP (2008) Decreto Ministeriale del 14 gennaio 2008. Nuove norme tecniche per le costruzioni. Gazzetta Ufficiale della Repubblica Italiana 4 febbraio 2008

  • D’Ayala D, Meslem A, Vamvatsikos D, Porter K, Rossetto T, Crowley H, Silva V (2014) Guidelines for analytical vulnerability assessment of low/mid-rise buildings-methodology, vulnerability global component project. Available: http://www.nexus.globalquakemodel.org/gemvulnerability/

  • De Luca F, Iervolino I, Vamvatsikos D (2011) Improving the static pushover analysis in the Italian seismic code by proper piece-wise-linear fitting of capacity curves. In: ANIDIS2011 convention on seismic engineering, Bari

  • EUROCODE-8-1 (2004) Design of structures for earthquake resistance. Part 1: general rules, seismic actions and rules for buildings. Comité Européen de Normalisation

  • Faccioli E, Cauzzi C (2006) Macroseismic intensities for seismic scenarios estimated from instrumentally based correlations. In: First European conference on earthquake engineering and seismology (a joint event of the 13th ECEE & 30th general assembly of the ESC), 2006 Genève

  • Fajfar P (1999) Capacity spectrum method based on inelastic demand spectra. Earthq Eng Struct Dyn 28:979–993

    Article  Google Scholar 

  • Fardis MN (2009) Seismic design, assessment and retrofitting of concrete buildings based on EN-Eurocode 8. Springer, New York

    Book  Google Scholar 

  • FEMA, NIBS (1999) HAZUS’99 technical manual: earthquake loss estimation methodology. Federal Emergency Management Agency and National Institute of Building Sciences (FEMA/NIBS), Washington

    Google Scholar 

  • FEMA-440, ATC-55 (2005) Improvement of nonlinear static seismic analysis procedures. Federal Emergency Management Agency, California

    Google Scholar 

  • Freeman SA, Nicoletti JP, Tyrell JV (1975) Evaluation of existing buildings for seismic risk—a case study of puget sound naval shipyard. U.S. National Conference on Earthquake Engineering, Washington, Bremerton. EERI, pp 113–122

  • Galasco A, Lagomarsino S, Penna A (2002) TREMURI program: seismic analyser of 3D Masonry Building. University of Genoa

  • Gambarotta L, Lagomarsino S (1997) Computational models for the seismic response of damaging structures. In: Abrams DP, Calvi GM (eds) U.S. Italian workshop on seismic evaluation and retrofit, Columbia University, National Center for Earthquake Engineering Research, New York City

  • Garcia Espuche A (1990) El quadrat d’Or. Centre de la Barcelona modernista. La formació d’un espai urbà privilegiat, Barcelona

    Google Scholar 

  • Giovinazzi S, Lagomarsino S (2002) WP04: guidelines for the implementation of the I level methodology for the vulnerability assessment of current buildings. Risk-UE report, Genoa

    Google Scholar 

  • GNDT (1994) Scheda di esposizione e vulnerabilita` e di rilevamento danni di primo livello e secondo livello (muratura e cemento armato). In: Gruppo Nazionale Per La Difesa Dai Terremoti (ed) Roma

  • González-Drigo R, Pérez-García V, Dicapua D, Pujades L (2008) GPR survey applied to modernist buildings in Barcelona: the cultural heritage of the college of industrial engineering. J Cult Herit 9:196–202

    Article  Google Scholar 

  • González-Drigo R, Avila-Haro J, Barbat A, Pujades L, Vargas Y, Lagomarsino S, Cattari S (2015) Modernist URM buildings of Barcelona. Seismic vulnerability and risk assessment. Int J Archit Herit 9:214–230

    Article  Google Scholar 

  • Grünthal G (1998) European Macroseismic Scale 1998 (EMS-98). Cahiers du Centre Européen de Géodynamique et de Séismologie. Centre Européen de Géodynamique et de Séismologie, Luxembourg

  • HAZUS (2012) HAZUS-MH 2.1 Technical manual. Earthquake model. In: Homeland Security & Federal Emergency Management Agency (eds) Washington, DC

  • Irizarry J, Goula X, Susagna T (2003) Analytical formulation for the elastic acceleration-displacement response spectra adapted to Barcelona soil conditions. Institut Cartogràfic de Catalunya, Barcelona

    Google Scholar 

  • Jalayer F, Cornel CA (2009) Alternative nonlinear demand estimation methods for probability-based seismic assessments. Earthq Eng Struct Dyn 38:951–972

    Article  Google Scholar 

  • Jayaram N, Lin T, Baker JW (2011) A computationally efficient ground motion selection algorithm for matching a target response spectrum mean and variance. Earthq Spectr 27:797–815

    Article  Google Scholar 

  • Kappos AJ (1997) Seismic damage indices for RC buildings: evaluation of concepts and procedures. Prog Struct Mat Eng 1:78–87

    Article  Google Scholar 

  • Keneddy RP, Cornel CA, Campbell RL, Kaplan S, Perla HF (1980) Probabilistic seismic safety study of an existing nuclear power plant. Nucl Eng Des 59:315–338

    Article  Google Scholar 

  • Kreslin M, Fajfar P (2012) The extended N2 method considering higher mode effects in both plan and elevation. Bull Earthq Eng 10:695–715

    Article  Google Scholar 

  • Lagomarsino S, Penna A (2003) Guidelines for the implementation of the II level vulnerability methodology. WP4: vulnerability assessment of current buildings. RISK-UE project: an advanced approach to earthquake risk scenarios with application to different European towns

  • Lagomarsino S, Galasco A, Penna A (2002) Pushover and dynamic analysis of URM buildings by means of a non-linear macro-element model. International conference on earthquake loss estimation and risk reduction. RISK-UE project, Bucharest

  • Lantada N (2007) Aplicación de Técnicas GIS a Estimación de Riesgos Naturales. PhD, Universitat Politècnica de Catalunya

  • Lantada N, Pujades L, Barbat A (2009) Vulnerability index and capacity spectrum based methods for urban seismic risk evaluation. A comparison. Nat Hazards 51:501–524

    Article  Google Scholar 

  • Milutinovic ZV, Trendafiloski GS (2003) WP4: vulnerability of current buildings. RISK-UE Project handbook

  • NIST (2011) Selecting and scaling earthquake ground motions for performing response-history analyses, NIST GCR 11-917-15. Gaithersburg, Maryland: by NEHRP Consultants Join Venture for the National Institute of Standards and Technology

  • Paricio A (2001) Secrets d’un Sistema Constructiu. España, Edicions UPC, Barcelona

    Google Scholar 

  • Pecker A (2007) Soil structure interaction structure. In: Pecker A (ed) Earthquake engineering analysis. SpringerWien, New York, pp 33–43

    Chapter  Google Scholar 

  • PEER (2011) New ground motion selection procedures and selected motions for the PEER transportation research program. Pacific Earthquake Engineering Research Center, California

    Google Scholar 

  • Peng N, Wang SH, Jiang L, Huang RQ (2012) Seismic risk assessment of structures using multiple stripe analysis. Appl Mech Mater 226–228:897–900

    Google Scholar 

  • Penna A (2002) A macro-element procedure for the non-linear dynamic analysis of masonry buildings. Ph.D., Politecnico di Milano

  • Pérez-García V, González-Drigo R, Sala R (2012) Ground-penetrating radar resolution in cultural heritage applications. Near Surf Geophys 10:77–87

    Google Scholar 

  • PIET-70 (1971) Obras de Fábrica. Torroja, I.E, Madrid

    Google Scholar 

  • Priestley MJN, Seible F, Calvi GM (1996) Seismic deisgn and retrofit of bridges. Wiley, New York

    Book  Google Scholar 

  • Pujades L, Barbat A, González-Drigo R, Avila-Haro J (2012) Seismic performance of a block of buildings representative of the typical construction in the eixample district in Barcelona (Spain). Bull Earthq Engs 10:331–349

    Article  Google Scholar 

  • Secanell R, Goula X, Susagna T, Fleta J, Roca A (1998) Analysis of seismic hazard in Catalonia (Spain) through different probabilistic approaches. In: Proceedings of the 11th European conference on earthquake engineering, Balkema, Paris

  • Secanell R, Goula X, Susagna T, Fleta J, Roca A (2004) Seismic hazard zonation of Catalonia, Spain, integrating uncertainties. J Seismolog 8:24–40

    Article  Google Scholar 

  • Susagna T, Goula X (1999) Cataleg de Sismicitat. Atlas Sismic de Catalunya. In: Catalunya ICFD (ed) Barcelona

  • The Mathworks I (2009b) MATLAB Release 2009b Massachusetts

  • Vamvatsikos D, Cornell CA (2002) Incremental dynamic analysis. Earthq Eng Struct Dyn 31:491–514

    Article  Google Scholar 

Download references

Acknowledgments

This research has been partially funded by the government of Spain (Ministerio de Economía y Competitividad-MINECO) and by the Fondo Europeo de Desarrollo Regional (FEDER) of the European Union (UE) through projects referenced as: CGL2011-23621 and CGL2015-65913-P (MINECO/FEDER, UE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gonzalez-Drigo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Drigo, R., Avila-Haro, J., Pujades, L.G. et al. Non-linear static procedures applied to high-rise residential URM buildings. Bull Earthquake Eng 15, 149–174 (2017). https://doi.org/10.1007/s10518-016-9951-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-016-9951-2

Keywords

Navigation