Skip to main content
Log in

Effectiveness of nonlinear static procedures for slender masonry towers

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

This paper investigates the accuracy of pushover-based methods in predicting the seismic response of slender masonry towers, through comparison with the results from a large number of nonlinear time-history dynamic analyses. In particular, conventional pushover analyses, in both their force- and displacement-based variants, are considered, and seismic assessment through the well-established N2 method is also addressed. The study is conducted by applying a simple non-linear elastic model recently developed and implemented in the computational code MADY to represent slender masonry structures. The model enables both pushover analyses and non-linear dynamic analyses to be performed with a minimum of effort. A multi-record incremental dynamic analysis carried out for a quite large number of structural cases, each of which is subjected to a comprehensive set of dynamic nonlinear analyses, is used to evaluate the accuracy of pushover methods in predicting the global structural response, as represented by the usual capacity curve together with a damage curve, both of which are compared with dynamic envelopes. Local responses, in terms of lateral displacements and the distribution of damage along the tower height are also compared. The results reveal that the key issue in the accuracy of pushover methods is the nature of the lateral load applied, that is, whether it is a force or a displacement. Different ranges of expected deformation are suggested for adopting each type of lateral load to better represent the actual behaviour of masonry towers and their damage under seismic events through pushover methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Acito M, Milani G, Chesi C, Vallè M, Sumini V (2013) Collapse of the clock-tower in Finale Emilia after the Emilia-Romagna seismic events in May 2012: a numerical insight. ANIDIS (2013) XV Convegno Nazionale L’Ingegneria Sismica in Italia. Padova, Italy (in Italian)

  • Ambraseys N, Smit P, Sigbjornsson R, Suhadolc P, Margaris B (2002) Internet-Site for European Strong-Motion Data, European Commission, Research-Directorate General, Environment and Climate Programme; http://www.isesd.cv.ic.ac.uk/ESD/

  • Antoniou S, Pinho R (2004) Development and verification of a displacement-based adaptive pushover procedure. J Earthq Eng 8(5):643–661

    Google Scholar 

  • Anzellotti G (1985) A class of converse non coercive functionals and masonry-like materials. Ann Inst Henry Poincaré 2:261–307

    Google Scholar 

  • ATC (1996) Seismic evaluation and retrofit of concrete buildings, vol 1, ATC 40, Redwood City: applied Technology Council

  • ATC (2005) Improvement of non-linear static seismic analysis procedures. FEMA-440, developed for the Federal Emergency Management Agency, Washington, DC

  • Bartoli G, Betti M, Biagini P, Borghini A, Ciavattone A, Facchini L, Marra AM, Orlando M, Ortolani B, Salvatori L, Spinelli P, Vignoli A (2012) Confronto tra modellazioni numeriche non lineari della risposta sismica di torri in muratura. In: Proceedings of AID MONUMENTS Conference, Perugia, Italy, (in Italian)

  • Bracci JM, Kunnath SK, Reinhorn AM (1997) Seismic performance and retrofit evaluation of reinforced concrete structures. ASCE J Struct Eng 123(1):3–10

    Article  Google Scholar 

  • CEN (2004) Eurocode 8—Design of structures for earthquake resistance, Part 1, European standard prEN 1998–1, Draft no. 4, European Committee for Standardization, Brussels

  • Casolo S (1998) A three-dimensional model for vulnerability analysis of slender medieval masonry towers. J Earthq Eng 2(4):487–512

    Google Scholar 

  • Casolo S, Uva G (2011) Seismic vulnerability assessment of masonry towers: full non-linear dynamics vs pushover analyses. In: Proceedings of COMPDYN 2011, ECCOMAS thematic conference on computational methods in structural dynamics and earthquake engineering, Corfù

  • Chopra AK, Goel RK (2002) A modal pushover analysis procedure for estimating seismic demands for buildings. Earthq Eng Struct Dyn 31:561–582

    Article  Google Scholar 

  • Chopra AK, Goel RK, Chintanapakdee C (2004) Evaluation of a modified MPA procedure assuming higher modes as elastic to estimate seismic demands. Earthq Spectra 20(3):757–778

    Article  Google Scholar 

  • Di Tommaso A, Casacci S (2013) Sopravvivenza di Torri e Campanili in ambiente sismico. In: Proceedings of the CIAS Conference Evoluzione nella sperimentazione per le costruzioni, Creta: 95–118 (in Italian)

  • Doğangün A, Sezen H, Tuluk Öİ, Livaoğlu R, Acar R (2007) Traditional Turkish masonry monumental structures and their earthquake response. Int J Archit Herit 1(3):251–271

    Article  Google Scholar 

  • Doglioni F, Moretti A, Petrini V (1994) Le chiese ed il terremoto, LINT, Trieste (in Italian)

  • Elnashai AS (2001) Advanced inelastic static (pushover) analysis for earthquake applications. Struct Eng Mech 12(1):51–69

    Article  Google Scholar 

  • Elnashai AS (2002) Do we really need inelastic dynamic analysis? J Earthq Eng 6(Special Issue 1):123–130

    Article  Google Scholar 

  • Fajfar P, Gaspersic P (1996) The N2 method for the seismic damage analysis of Rc buildings. Earthq Eng Struct Dyn 25:31–46

    Article  Google Scholar 

  • Fajfar P (1999) Capacity spectrum method based on inelastic demand spectra. Earthq Eng Struct Dyn 28:979–993

    Article  Google Scholar 

  • Fajfar P, Marušić D, Perus I (2005) Torsional effects in the pushover-based seismic analysis of buildings. J Earthq Eng 9(6):831–854

    Google Scholar 

  • FEMA (1997) NEHRP guidelines for the seismic rehabilitation of buildings. FEMA-273, and NEHRP commentary on the guidelines for the seismic rehabilitation of buildings, FEMA-274, developed for the Federal Emergency Management Agency, Washington, DC

  • FEMA (2000) Prestandard and commentary on the guidelines for the seismic rehabilitation of buildings. FEMA-356, Federal Emergency Management Agency, Washington, DC

  • Girardi M, Lucchesi M, Padovani P, Pasquinelli G, Pintucchi B, Zani N (2012) Numerical methods for slender masonry structures: a comparative study. In: Proceedings of CST 2012—the eleventh international conference on computational structures technology, Dubrovnik, Croatia, article no 11826. Civil-Comp Press

  • Hernández-Montes E, Kwon OS, Aschheim MA (2004) An energy-based formulation for first- and multiple-mode nonlinear static (pushover) analyses. J Earthq Eng 8(1):69–88

    Google Scholar 

  • Iervolino I, Chioccarelli E, De Luca F (2012) Preliminary study of Emilia (May 20th 2012) Earthquake ground motion records V2.11. Available at http://www.reluis.it

  • Iervolino I, Galasso C, Cosenza E (2009) REXEL: computer aided record selection for code-based seismic structural analysis. Bull Earthq Eng 8:339–362

    Article  Google Scholar 

  • Kalkan E, Kunnath SK (2007) Assessment of current nonlinear static procedures for seismic evaluation of buildings. Eng Struct 29:305–316

    Article  Google Scholar 

  • Kim S, D’Amore E (1999) Push-over analysis procedure in earthquake engineering. Earthq spectra 15(3):417–434

    Article  Google Scholar 

  • Krawinkler H, Seneviratna GD (1998) Pros and cons of pushover analysis of seismic performance evaluation. Eng Struct 20(4-6):452–464

    Article  Google Scholar 

  • Kreslin M, Fajfar P (2011) The extended N2 method taking into account higher mode effects in elevation. Earthq Eng Struct Dyn 40(14):1571–1589

    Article  Google Scholar 

  • Lucchesi M, Pintucchi B (2007) A numerical model for non-linear dynamics analysis of masonry slender structures. Eur J Mech A/Solid 26:88–105

    Article  Google Scholar 

  • Lucchesi M, Pintucchi B, Zani N (2011a) Valutazione della risposta sismica di torri in muratura tramite analisi statiche non lineari. In: Proceedings of WONDERMasonry—workshop on design for rehabilitation of masonry structures, Firenze, Italy (in Italian)

  • Lucchesi M, Pintucchi B, Zani N (2011b) Pushover analysis for seismic assessment of masonry towers. In: Proceedings of the 5th international congress on science and technology for the safeguard of cultural heritage in the mediterranean Basin; Istanbul, Turkey, vol. II, p 197

  • Lucchesi M, Silhavy M, Zani N (2012) Equilibrium problems and limit analysis of masonry beams. J Elast 106:165–188

    Article  Google Scholar 

  • Lucchesi M, Pintucchi B, Zani N. The finite element code MADY for non-linear static and dynamic analysis of masonry structures (in preparation)

  • Milani G, Casolo S, Naliato A, Tralli A (2012) Seismic assessment of a medieval masonry tower in northern Italy by limit, nonlinear static, and full dynamic analyses. Int J Archit Herit 6(5):489–524

    Article  Google Scholar 

  • Minghini F, Milani G, Cantelli M, Tralli A, (2013) Una Ciminiera in Muratura Danneggiata dalla Sequenza Sismica Emiliana del Maggio (2012) ANIDIS 2013, XV Convegno Nazionale ‘L’Ingegneria Sismica in Italia’. Padova, Italy (in Italian)

  • Ministero delle Infrastrutture e dei Trasporti (2008) Norme tecniche per le costruzioni—D.M. 14 Gennaio 2008. Supplemento Ordinario no. 30 Gazzetta Ufficiale no. 29 del 4-2-2008 (in Italian).

  • Ministero delle Infrastrutture e dei Trasporti (2009) Istruzioni per l’applicazione delle “Nuove norme tecniche per le costruzioni”. Circolare no. 617 del 2-2-2009 (in Italian)

  • Ministero per i Beni e le Attività Culturali (2011) Linee Guida per la valutazione e riduzione del rischio sismico del patrimonio culturale con riferimento alle Norme tecniche per le Costruzioni. Supplemento ordinario n. 54 alla Gazzetta Ufficiale del 26-2-2011 (in Italian)

  • Pelà L, Aprile A, Benedetti A (2009) Seismic assessment of masonry arch bridges. Eng Struct 31:1777–1788

    Article  Google Scholar 

  • Peña F, Lourenço PB, Mendes N, Oliveira DV (2010) Numerical models for the seismic assessment of an old masonry tower. Eng Struct 32:1466–1478

    Article  Google Scholar 

  • Pintucchi B, Zani N (2009) Effects of material and geometric non-linearities on the collapse load of masonry arches. Eur J Mech A/Solid 28:45–61

    Article  Google Scholar 

  • Regione Molise, DAST-CNR (2005) Sisma Molise 2002: Beni monumentali e terremoto. Dall’emergenza alla ricostruzione, a cura di G. Cifani, A. Lemme, S. Podestà, DEI Tipografia del Genio Civile (in Italian)

  • Reinhorn AM (1997) Inelastic analysis techniques in seismic evaluations. In: Fajfar P, Krawinkler H (eds) Seismic design methodologies for the next generation of codes. Balkema, Rotterdam, pp 277–287

    Google Scholar 

  • Resemini S, Lagomarsino S (2007) Displacement-based methods for the seismic assessment of masonry arch bridges. In: Proceedings of Arch’07 5th international conference on arch bridges, Madeira, Portugal

  • Vamvatsikos D, Cornell CA (2002) Incremental dynamic analysis. Earthq Eng Struct Dyn 31(3):491–514

    Article  Google Scholar 

  • Vamvatsikos D, Cornell CA (2004) Applied incremental dynamic analysis. Earthq Spectra 20:523–553

    Article  Google Scholar 

  • Working Group ITACA (2008) Data Base of the Italian strong motion data. http://itaca.mi.ingv.it

Download references

Acknowledgments

The financial support provided by the Regione Toscana is gratefully acknowledged (project “Tools for modelling and assessing the structural behaviour of ancient constructions: the NOSA-ITACA code”, PAR FAS 2007-2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Pintucchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pintucchi, B., Zani, N. Effectiveness of nonlinear static procedures for slender masonry towers. Bull Earthquake Eng 12, 2531–2556 (2014). https://doi.org/10.1007/s10518-014-9595-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-014-9595-z

Keywords

Navigation