Skip to main content
Log in

Orbital stabilization of an underactuated bipedal gait via nonlinear \({{\mathcal H}}_{\infty }\)-control using measurement feedback

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

The primary concern of the work is robust control of hybrid mechanical systems under unilateral constraints with underactuation degree one. Nonlinear \({{\mathcal H}}_{\infty }\) output feedback synthesis is developed in the hybrid setting, covering collision phenomena. Sufficient conditions are presented to ensure internal asymptotic stability while also attenuating external disturbances and plant uncertainties. The developed synthesis is applied to the orbital stabilization of an underactuated bipedal robot periodically touching the ground. Good performance of the closed-loop system is obtained not only in the presence of measurement noise and external disturbances, affecting the gait of the biped between collision time instants, but also under uncertainties at the velocity restitution when the ground collision occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Alcaraz-Jiménez, J., Herrero-Pérez, D., & Martínez-Barberá, H. (2013). Robust feedback control of zmp-based gait for the humanoid robot nao. The International Journal of Robotics Research, 32(9–10), 1074–1088.

    Article  Google Scholar 

  • Ames, A., Galloway, K., & Grizzle, J. (2012). Control lyapunov functions and hybrid zero dynamics. In 2012 IEEE 51st Annual Conference on Decision and Control (CDC), IEEE (pp. 6837–6842).

  • Angelosanto, G. (2008). Kalman filtering of imu sensor for robot balance control. PhD thesis, Massachusetts Institute of Technology.

  • Aoustin, Y., & Formalsky, A. (2003). Control design for a biped: Reference trajectory based on driven angles as functions of the undriven angle. Journal of Computer and Systems Sciences International, 42(4), 645–662.

    MathSciNet  MATH  Google Scholar 

  • Aoustin, Y., Chevallereau, C., & Formalsky, A. (2006). Numerical and experimental study of the virtual quadrupedal walking robot-semiquad. Multibody System Dynamics, 16(1), 1–20.

    Article  MATH  Google Scholar 

  • Aoustin, Y., Chevallereau, C., & Orlov, Y. (2010). Finite time stabilization of a perturbed double integrator-part ii: applications to bipedal locomotion. In 2010 49th IEEE Conference on Decision and Control (CDC) (pp. 3554–3559). IEEE, Piscataway.

  • Arai, H., Tanie, K., & Shiroma, N. (1998). Time-scaling control of an underactuated manipulator. In 1998 IEEE International Conference on Robotics and Automation Proceedings (Vol. 3, pp. 2619–2626). IEEE, Piscataway.

  • Basar, T., & Bernhard, P. (1995). \(\cal H_\infty \)-optimal control and related minimax design problems: A dynamic game approach. Boston: Birkhaeuser.

  • Bezier, P. (1972). Numerical control: Mathematics and applications. London: Wiley and Sons.

    MATH  Google Scholar 

  • Brogliato, B. (1999). Nonsmooth mechanics: Models, dynamics and control. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Bullo, F., & Lynch, K. (2001). Kinematic controllability for decoupled trajectory planning in underactuated mechanical systems. IEEE Transactions on Robotics and Automation, 17(4), 402–412.

    Article  Google Scholar 

  • Chevallereau, C., Abba, G., Aoustin, Y., Plestan, F., Westervelt, E., Canudas De Wit, C., et al. (2003). Rabbit: A testbed for advanced control theory. IEEE Control Systems Magazine, 23(5), 57–79.

    Article  Google Scholar 

  • Chevallereau, C., Grizzle, J., & Shih, C. (2009). Asymptotically stable walking of a five-link underactuated 3-d bipedal robot. IEEE Transactions on Robotics, 25(1), 37–50.

    Article  Google Scholar 

  • Dai, H., & Tedrake, R. (2012). Optimizing robust limit cycles for legged locomotion on unknown terrain. In 2012 IEEE 51st Annual Conference on Decision and Control (CDC) (pp. 1207–1213). IEEE, Piscataway.

  • Dai, H., & Tedrake, R. (2013). \({\cal L}_{2}\)-gain optimization for robust bipedal walking on unknown terrain. In 2013 IEEE International Conference on Robotics and Automation (ICRA) (pp. 3116–3123). IEEE, Piscataway.

  • Djoudi, D., Chevallereau, C., & Aoustin, Y. (2005). Optimal reference motions for walking of a biped robot. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005 (pp 2002–2007). IEEE, Piscataway.

  • Freidovich, L., & Shiriaev, A. (2009). Transverse linearization for mechanical systems with passive links, impulse effects, and friction forces. In Proceedings of the 48th IEEE Conference on Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009 (pp. 6490–6495). IEEE, Piscataway.

  • Freidovich, L., Shiriaev, A., & Manchester, I. (2008). Stability analysis and control design for an underactuated walking robot via computation of a transverse linearization. In Proceedings of 17th IFAC World Congress, Seoul (pp. 10–166).

  • Goebel, R., Sanfelice, R., & Teel, A. (2009). Hybrid dynamical systems. IEEE Control Systems, 29(2), 28–93.

    Article  MathSciNet  Google Scholar 

  • Grizzle, J., Abba, G., & Plestan, F. (2001). Asymptotically stable walking for biped robots: Analysis via systems with impulse effects. IEEE Transactions on Automatic Control, 46(1), 51–64.

    Article  MathSciNet  MATH  Google Scholar 

  • Haddad, W., Kablar, N., Chellaboina, V., & Nersesov, S. (2005). Optimal disturbance rejection control for nonlinear impulsive dynamical systems. Nonlinear Analysis: Theory, Methods & Applications, 62(8), 1466–1489.

    Article  MathSciNet  MATH  Google Scholar 

  • Hamed, K., & Grizzle, J. (2013). Robust event-based stabilization of periodic orbits for hybrid systems: Application to an underactuated 3D bipedal robot. In Proceedings of the 2013 American Control Conference.

  • Hamed, K., & Grizzle, J. (2014). Event-based stabilization of periodic orbits for underactuated 3-d bipedal robots with left-right symmetry. IEEE Transactions on Robotics, 30(2), 365–381.

    Article  Google Scholar 

  • Hamed, K., Buss, B., & Grizzle, J. (2014). Continuous-time controllers for stabilizing periodic orbits of hybrid systems: Application to an underactuated 3d bipedal robot. In Proceedings of the 53rd IEEE Conderence on Decision and Control.

  • Hobbelen, D., & Wisse, M. (2007). A disturbance rejection measure for limit cycle walkers: The gait sensitivity norm. IEEE Transactions on Robotics, 23(6), 1213–1224.

    Article  Google Scholar 

  • Isidori, A., & Astolfi, A. (1992). Disturbance attenuation and \({\cal H}_\infty \)-control via measurement feedback in nonlinear systems. IEEE Transactions on Automatic Control, 37(9), 1283–1293.

    Article  MathSciNet  MATH  Google Scholar 

  • La Hera, P., Shiriaev, A., Freidovich, L., Mettin, U., & Gusev, S. (2013). Stable walking gaits for a three-link planar biped robot with one actuator. IEEE Transactions on Robotics, 29(3), 589–601.

    Article  Google Scholar 

  • Leonov, G. (2006). Generalization of the andronov-vitt theorem. Regular and Chaotic Dynamics, 11(2), 281–289.

    Article  MathSciNet  MATH  Google Scholar 

  • Manamani, N., Gauthier, N., & MSirdi, N. (1997). Sliding mode control for pneumatic robot leg. In Proceedings European Control Conference.

  • Mettin, U., La Hera, P., Freidovich, L., & Shiriaev, A. (2007). Planning human-like motions for an underactuated humanoid robot based on the virtual constraints approach. Proceedings of 13th International Conference on Advanced Robotics, Jeju, Korea (pp. 585–590).

  • Meza-Sanchez, I., Aguilar, L., Shiriaev, A., Freidovich, L., & Orlov, Y. (2011). Periodic motion planning and nonlinear \({\cal H}_\infty \) tracking control of a 3-dof underactuated helicopter. International Journal of Systems Science, 42(5), 829–838.

    Article  MathSciNet  MATH  Google Scholar 

  • Miossec, S., & Aoustin, Y. (2005). A simplified stability study for a biped walk with underactuated and overactuated phases. The International Journal of Robotics Research, 24(7), 537–551.

    Article  Google Scholar 

  • Miossec, S., & Aoustin, Y. (2006). Dynamical synthesis of a walking cyclic gait for a biped with point feet. In Fast motions in biomechanics and robotics, Springer, Berlin (pp. 233–252).

  • Montano, O., Orlov, Y., & Aoustin, Y. (2014). Nonlinear \({\cal H}_\infty \)-control of mechanical systems under unilateral constraints. In Proceedings of the 19th World Congress of the International Federation of Automatic Control, IFAC, pp 3833–3838 (extended journal version was submitted to Control Engineering Practice under the title “Nonlinear \({\cal H}_\infty \)-stabilization of fully actuated bipedal locomotion under unilateral constraints”).

  • Montano, O., Orlov, Y., & Aoustin, Y. (2015a). Nonlinear output feedback \(\cal H_\infty \)-control of mechanical systems under unilateral constraints. In Proceedings of the 1st IFAC Conference on Modelling, Identification and Control of Nonlinear Systems (pp 284–289).

  • Montano, O., Orlov, Y., Aoustin, Y., & Chevallereau, C. (2015b). Nonlinear orbital \(\cal H_\infty \)-stabilization of underactuated mechanical systems with unilateral constraints. In Proceedings of the 14th European Control Conference (pp 800–805).

  • Morris, B., & Grizzle, J. (2005). A restricted poincaré map for determining exponentially stable periodic orbits in systems with impulse effects: Application to bipedal robots. In 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC’05 (pp. 4199–4206). IEEE, Piscataway.

  • Naldi, R., & Sanfelice, R. G. (2013). Passivity-based control for hybrid systems with applications to mechanical systems exhibiting impacts. Automatica, 49(5), 1104–1116.

    Article  MathSciNet  MATH  Google Scholar 

  • Nešić, D., Zaccarian, L., & Teel, A. (2008). Stability properties of reset systems. Automatica, 44(8), 2019–2026.

    Article  MathSciNet  MATH  Google Scholar 

  • Nešić, D., Teel, A. R., Valmorbida, G., & Zaccarian, L. (2013). Finite-gain stability for hybrid dynamical systems. Automatica, 49(8), 2384–2396.

    Article  MathSciNet  MATH  Google Scholar 

  • Nikkhah, M., Ashrafiuon, H., & Fahimi, F. (2007). Robust control of underactuated bipeds using sliding modes. Robotica, 25(03), 367–374.

    Article  Google Scholar 

  • Orlov, Y., & Aguilar, L. (2014). Advanced \({\cal H} _\infty \) control-towards nonsmooth theory and applications. Boston: Birkhauser.

  • Orlov, Y., Acho, L., & Solis, V. (1999). Nonlinear \(\cal H_\infty \)-control of time-varying systems. In Proceedings of the 38th IEEE Conference on Decision and Control, 1999 (Vol. 4, pp. 3764–3769). IEEE, Piscataway.

  • Oza, H., Orlov, Y., Spurgeon, S., Aoustin, Y., & Chevallereau, C. (2014). Finite time tracking of a fully actuated biped robot with pre-specified settling time: a second order sliding mode synthesis. In 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2570–2575). IEEE, Piscataway.

  • Raibert, M., Tzafestas, S., & Tzafestas, C. (1993). Comparative simulation study of three control techniques applied to a biped robot. In International Conference on Systems, Man and Cybernetics, 1993’.Systems Engineering in the Service of Humans’, Conference Proceedings (pp 494–502). IEEE, Piscataway.

  • Shiriaev, A., Perram, J., & Canudas-de Wit, C. (2005). Constructive tool for orbital stabilization of underactuated nonlinear systems: Virtual constraints approach. IEEE Transactions on Automatic Control, 50(8), 1164–1176.

    Article  MathSciNet  Google Scholar 

  • Shiriaev, A., Freidovich, L., & Manchester, I. (2008). Can we make a robot ballerina perform a pirouette? Orbital stabilization of periodic motions of underactuated mechanical systems. Annual Reviews in Control, 32(2), 200–211.

    Article  Google Scholar 

  • Shiriaev, A. S., & Freidovich, L. B. (2009). Transverse linearization for impulsive mechanical systems with one passive link. IEEE Transactions on Automatic Control, 54(12), 2882–2888.

    Article  MathSciNet  Google Scholar 

  • Tlalolini, D., Chevallereau, C., & Aoustin, Y. (2011). Human-like walking: Optimal motion of a bipedal robot with toe-rotation motion. IEEE/ASME Transactions on Mechatronics, 16(2), 310–320.

    Article  Google Scholar 

  • Van Der Schaft, A. (1991). On a state space approach to nonlinear h control. Systems & Control Letters, 16(1), 1–8.

    Article  MathSciNet  MATH  Google Scholar 

  • Westervelt, E., Buche, G., & Grizzle, J. (2004). Experimental validation of a framework for the design of controllers that induce stable walking in planar bipeds. The International Journal of Robotics Research, 23(6), 559–582.

    Article  Google Scholar 

  • Westervelt, E., Grizzle, J., Chevallereau, C., Choi, J., & Morris, B. (2007). Feedback control of dynamic bipedal robot locomotion. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Westervelt, E. R., Grizzle, J. W., & Koditschek, D. E. (2003). Hybrid zero dynamics of planar biped walkers. IEEE Transactions on Automatic Control, 48(1), 42–56.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of Campus France grant Eiffel and CONACYT Grant No.165958.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannick Aoustin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montano, O., Orlov, Y., Aoustin, Y. et al. Orbital stabilization of an underactuated bipedal gait via nonlinear \({{\mathcal H}}_{\infty }\)-control using measurement feedback. Auton Robot 41, 1277–1295 (2017). https://doi.org/10.1007/s10514-015-9543-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-015-9543-z

Keywords

Navigation