Skip to main content

Advertisement

Log in

A robust loop-closure method for visual SLAM in unstructured seafloor environments

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper addresses the problem of visual simultaneous localization and mapping (SLAM) in an unstructured seabed environment that can be applied to an unmanned underwater vehicle equipped with a single monocular camera as the main measurement sensor. Monocular vision is regarded as an efficient sensing option in the context of SLAM, however it poses a variety of challenges when the relative motion is determined by matching a pair of images in the case of in-water visual SLAM. Among the various challenges, this research focuses on the problem of loop-closure which is one of the most important issues in SLAM. This study proposes a robust loop-closure algorithm in order to improve operational performance in terms of both navigation and mapping by efficiently reconstructing image matching constraints. To demonstrate and evaluate the effectiveness of the proposed loop-closure method, experimental datasets obtained in underwater environments are used, and the validity of the algorithm is confirmed by a series of comparative results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Angeli, A., Filliat, D., Doncieux, S., & Meyer, J.-A. (2008). Fast and incremental method for loop-closure detection using bags of visual words. IEEE Transactions on Robotics, 24(5), 1027–1037.

    Article  Google Scholar 

  • Ballard, R. D., Stager, L. E., Master, D., Yoerger, D., Mindell, D., Whitcomb, L. L., et al. (2002). Iron age shipwrecks in deep water off Ashkelon, Israel, American Journal of Archaeology, 106, 151–168.

  • Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up robust features (SURF). Computer Vision and Image Understanding, 110(3), 346–359.

    Article  Google Scholar 

  • Brown,M., & Lowe, D. G. (2005). Unsupervised 3d object recognition and reconstruction in unordered datasets. In 3-D digital imaging and modeling, 2005. 3DIM 2005. Fifth international conference on IEEE (pp. 56–63).

  • Chow, C., & Liu, C. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14(3), 462–467.

    Article  MathSciNet  MATH  Google Scholar 

  • Csurka, G., Dance, C., Fan, L., Willamowski, J., & Bray, C. (2004). Visual categorization with bags of keypoints. In Workshop on statistical learning in computer vision, ECCV (Vol. 1, pp. 1–2).

  • Cummins, M., & Newman, P. (2011). Appearance-only slam at large scale with fab-map 2.0. The International Journal of Robotics Research, 30(9), 1100–1123.

    Article  Google Scholar 

  • Elibol, A., Garcia, R., & Gracias, N. (2011). A new global alignment approach for underwater optical mapping. Ocean Engineering, 38(10), 1207–1219.

    Article  Google Scholar 

  • Elibol, A., Gracias, N., & Garcia, R. (2010). Augmented state-extended kalman filter combined framework for topology estimation in large-area underwater mapping. Journal of Field Robotics, 27(5), 656–674.

    Article  Google Scholar 

  • Eustice, R. M., Pizarro, O., & Singh, H. (2008). Visually augmented navigation for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering, 33(2), 103–122.

    Article  Google Scholar 

  • Eustice, R. M., Singh, H., & Leonard, J. J. (2006a). Exactly sparse delayed-state filters for view-based slam. IEEE Transactions on Robotics, 22(6), 1100–1114.

    Article  Google Scholar 

  • Eustice, R. M., Singh, H., Leonard, J. J., & Walter, M. R. (2006b). Visually mapping the rms titanic: Conservative covariance estimates for slam information filters. International Journal of Robotics Research, 25(12), 1223–1242.

    Article  Google Scholar 

  • Faugeras, O. D., & Lustman, F. (1988). Motion and structure from motion in a piecewise planar environment. International Journal of Pattern Recognition and Artificial Intelligence, 2(03), 485–508.

    Article  Google Scholar 

  • Ferrer, J., Elibol, A., Delaunoy, O., Gracias, N., & Garcia, R. (2007). Large-area photo-mosaics using global alignment and navigation data. In MTS/IEEE OCEANS conference (pp. 1–9). Vancouver, Canada.

  • García, R., Puig, J., Ridao, P., & Cufi, X. (2002). Augmented state kalman filtering for auv navigation. In Robotics and automation, 2002. Proceedings of the ICRA’02 IEEE international conference (Vol. 4, pp. 4010–4015).

  • Gracias, N., Mahoor, M., Negahdaripour, S., & Gleason, A. (2009). Fast image blending using watersheds and graph cuts. Image and Vision Computing, 27(5), 597–607.

    Article  Google Scholar 

  • Gracias, N., & Santos-Victor, J. (2000). Underwater video mosaics as visual navigation maps. Computer Vision and Image Understanding, 79(1), 66–91.

    Article  Google Scholar 

  • Grisetti, G., Lodi Rizzini, D., Stachniss, C., Olson, E., & Burgard, W. (2008). Online constraint network optimization for efficient maximum likelihood map learning. In Robotics and automation, 2008. ICRA 2008. IEEE international conference (pp. 1880–1885).

  • Haralick, R. M. (1996). Propagating covariance in computer vision. International Journal of Pattern Recognition and Artificial Intelligence, 10(05), 561–572.

    Article  Google Scholar 

  • Harris, C. & Stephens, M. (1988). A combined corner and edge detector. In Alvey vision conference, Manchester (Vol. 15, p. 50).

  • Hartley, R., & Zisserman, A. (2004). Multiple View Geometry in Computer Vision (2nd ed.). Cambridge: Cambridge University Press.

  • Johannsson, H., Kaess, M., Englot, B., Hover, F., & Leonard, J. (2010). Imaging sonar-aided navigation for autonomous underwater harbor surveillance. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference (pp. 4396–4403).

  • Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., & Dellaert, F. (2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. International Journal of Robotics Research, 31, 216–235.

  • Kaess, M., Ranganathan, A., & Dellaert, F. (2008). isam: Incremental smoothing and mapping. IEEE Transactions on Robotics, 24(6), 1365–1378.

    Article  Google Scholar 

  • Kawewong, A., Tongprasit, N., Tangruamsub, S., & Hasegawa, O. (2011). Online and incremental appearance-based slam in highly dynamic environments. The International Journal of Robotics Research, 30(1), 33–55.

    Article  Google Scholar 

  • Kim, A. (2012). Active visual SLAM with exploration for autonomous underwater navigation. PhD thesis, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.

  • Kim, A., & Eustice, R. M. (2013). Real-time visual slam for autonomous underwater hull inspection using visual saliency. IEEE Transactions on Robotics, 29(3), 719–733.

    Article  Google Scholar 

  • Leutenegger, S., Chli, M., & Siegwart, R. Y. (2011). Brisk: Binary robust invariant scalable keypoints. In Computer Vision (ICCV), 2011 IEEE international conference (pp. 2548–2555).

  • Lirman, D., Gracias, N. R., Gintert, B. E., Gleason, A. C. R., Reid, R. P., Negahdaripour, S., et al. (2007). Development and application of a video-mosaic survey technology to document the status of coral reef communities. Environmental Monitoring and Assessment, 125(1–3), 59–73.

    Article  Google Scholar 

  • Lowe, D. G. (2004). Distinctive Image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Mallios, A., Ridao, P., Ribas, D., & Hernández, E. (2014). Scan matching slam in underwater environments. Autonomous Robots, 36(3), 181–198.

    Article  Google Scholar 

  • Nicosevici, T. & Garcia, R. (2009). On-line visual vocabularies for robot navigation and mapping. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ international conference (pp. 205–212).

  • Opelt, A., Fussenegger, M., Pinz, A., & Auer, P. (2004). Weak hypotheses and boosting for generic object detection and recognition. In Computer vision-ECCV 2004 (pp. 71–84). Springer.

  • Pyo, J., Joe, H.-G., Kim, J.-H., Elibol, A., & Yu, S.-C. (2013). Development of hovering-type auv ’cyclops’ for precision observation. In OCEANS-San Diego, 2013 MTS/IEEE.

  • Ridao, P., Carreras, M., Ribas, D., & Garcia, R. (2010). Visual inspection of hydroelectric dams using an autonomous underwater vehicle. Journal of Field Robotics, 27(6), 759–778.

    Article  Google Scholar 

  • Sawhney, H.S., Hsu, S., & Kumar, R. (1998). Robust video mosaicing through topology inference and local to global alignment. In European coference on computer vision (pp. 103–119). Springer.

  • Singh, H., Armstrong, R., Gilbes, F., Eustice, R., Roman, C., Pizarro, O., et al. (2004). Imaging coral I: Imaging coral habitats with the seabed auv. Subsurface Sensing Technologies and Applications, 5(1), 25–42.

    Article  Google Scholar 

  • Sivic, J., & Zisserman, A. (2003). Video google: A text retrieval approach to object matching in videos. In Computer Vision, 2003. Proceedings. Ninth IEEE international conference (pp. 1470–1477).

  • Snavely, N., Seitz, S. M., & Szeliski, R. (2006). Photo tourism: exploring photo collections in 3d. ACM transactions on Graphics (TOG), 25(3), 835–846.

    Article  Google Scholar 

  • Yoerger, D. R., Bradley, A. M., Walden, B., Cormier, M., & Ryan, W. (1999). High resolution mapping of a fast spreading mid ocean ridge with the autonomous benthic explorer. In International Symposium on Unmanned Untethered Submersible Technology (pp. 21–31). University of New Hampshire-Marine Systems.

  • Zhang, J., Marszałek, M., Lazebnik, S., & Schmid, C. (2007). Local features and kernels for classification of texture and object categories: A comprehensive study. International Journal of Computer Vision, 73(2), 213–238.

    Article  Google Scholar 

  • Zhang, Z., & Hanson, A. R. (1996). 3d reconstruction based on homography mapping. In ARPA Image Understanding Workshop (pp. 249–399). Citeseer.

  • Zuiderveld, K. (1994). Contrast limited adaptive histogram equalization. In Graphics gems IV (pp. 474–485). Academic Press Professional, Inc.

Download references

Acknowledgments

The authors would like to thank Dr. Armagan Elibol in Yildiz Technical University for his initial work and research contributions that helped to develop this work. This research was a part of the project titled ‘Development of an autonomous ship-hull inspection system’, funded by the Ministry of Oceans and Fisheries, Korea. This research was supported by KI Project through KAIST Institute of Design of Complex Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwhan Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S., Kim, J., Pyo, J. et al. A robust loop-closure method for visual SLAM in unstructured seafloor environments. Auton Robot 40, 1095–1109 (2016). https://doi.org/10.1007/s10514-015-9512-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-015-9512-6

Keywords

Navigation