Skip to main content
Log in

Human-inspired force compliant grasping primitives

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

We address the problem of grasping everyday objects that are small relative to an anthropomorphic hand, such as pens, screwdrivers, cellphones, and hammers from their natural poses on a support surface, e.g., a table top. In such conditions, state of the art grasp generation techniques fail to provide robust, achievable solutions due to either ignoring or trying to avoid contact with the support surface. In contrast, when people grasp small objects, they often make use of substantial contact with the support surface. In this paper we give results of human subjects grasping studies which show the extent and characteristics of environment contact under different task conditions. We develop a simple closed-loop hybrid grasping controller that mimics this interactive, contact-rich strategy by a position-force, pre-grasp and landing strategy for finger placement. The approach uses a compliant control of the hand during the grasp and release of objects in order to preserve safety. We conducted extensive robotic grasping experiments on a variety of small objects with similar shape and size. The results demonstrate that our approach is robust to localization uncertainties and applies to many everyday objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. Agloves, http://www.agloves.com/.

  2. Open WAM Driver: http://personalrobotics.ri.cmu.edu/pr-ros-pkg/owd/html/index.html.

References

  • Bagnell, J. A., Cavalcanti, F., Cui, L., Galluzzo, T., Hebert, M., Kazemi, M., Klingensmith, M., Libby, J., Yu Liu, T., Pollard, N., Pivtoraiko, M., Valois, J.-S., & Zhu, R. (2012). System design and implementation for autonomous robotic manipulation. In Proceedings of International Conference on Intelligent Robots and Systems (IROS).

  • Berenson, D., & Srinivasa, S. (December 2008). Grasp synthesis in cluttered environments for dexterous hands. In Proceedings of IEEE-RAS International Conference on Humanoid Robots (HUMANOIDS) (pp. 1–19)

  • Bicchi, A., & Kumar, V. (2000). Robotic grasping and contact: A review. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA) (pp. 348–353).

  • Brost, R. C. (1988). Automatic grasp planning in the presence of uncertainty. International Journal of Robotics Research, 7(1), 3–17.

    Article  Google Scholar 

  • Castiello, U. (2005). The neuroscience of grasping. Nature Reviews Neuroscience, 9(6), 726736.

    Google Scholar 

  • Ciocarlie Matei, T., & Allen Peter, K. (2009). Hand posture subspaces for dexterous robotic grasping. International Journal of Robotic Research, 28(7), 851–867.

    Article  Google Scholar 

  • Diankov, R. (August 2010). Automated construction of robotic manipulation programs. PhD thesis, Carnegie Mellon University, Robotics Institute.

  • Dogar, M. R., & Srinivasa, S. S. (2010). Push-grasping with dexterous hands: Mechanics and a method. In Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS) (pp. 2123–2130).

  • Dollar, A. M., & Howe, R. D. (2005). Towards grasping in unstructured environments: Grasper compliance and conguration optimization. Advanced Robotics, 19(5), 523–544.

    Article  Google Scholar 

  • Erdmann, M. A., & Mason, M. T. (1988). An exploration of sensorless manipulation. IEEE Journal on Robotics and Automation, 4(4), 369–379.

    Article  Google Scholar 

  • Harada, K., Kaneko, M., & Tsujii, T. (2000). Rolling-based manipulation for multiple objects. IEEE Transactions on Robotics, 16(5), 457–468.

    Article  Google Scholar 

  • Hebert, P., Hudson, N., Ma, J., Howard, T., Fuchs, T., Bajracharya, M., & Burdick, J. W. (May 2012). Combined shape, appearance and silhouette for simultaneous manipulator and object tracking. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA) (pp. 2405–2412).

  • Hogan, N. (1985). Impedance control: An approach to manipulation: Part I theory. Journal of Dynamic Systems Measurement and Control, 107(1), 1–7.

    Article  MATH  Google Scholar 

  • Hsiao, K., Kaelbling, L., & Lozano-Perez, T. (2011). Robust grasping under object pose uncertainty. Autonomous Robots, 31(2–3), 1–16.

    Google Scholar 

  • Javdani, S., Klingensmith, M., Andrew (Drew) Bagnell, J., Pollard, N., & Srinivasa, S. (May 2013). Efficient touch based localization through submodularity. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA) (pp. 1828–1835).

  • Johansson, R. S., & Flanagan, J. R. (2009). Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Reviews Neuroscience, 10(5), 345–359.

    Google Scholar 

  • Kalakrishnan, M., Righetti, L., Pastor, P., & Schaal, S. (2011). Learning force control policies for compliant manipulation. In Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS) (pp. 4639–4644).

  • Katz, D., Kazemi, M., Andrew Bagnell, J., & Stentz, A. (March 2013). Clearing a pile of unknown objects using interactive perception. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA) (pp. 154–161).

  • Katz, D., Venkatraman, A, Kazemi, M., Andrew Bagnell, J., & Stentz, A. (June 2013). Perceiving, learning, and exploiting object affordances for autonomous pile manipulation. In Proceedings of Robotics: Science and Systems Conference (R: SS.

  • Kazemi, M., Valois, J.-S., Andrew Bagnell, J., & Pollard, N. (July 2012). Robust object grasping using force compliant motion primitives. In Proceedings of Robotics: Science and Systems (R: SS).

  • Khatib, O. (1987). A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Journal of Robotics and Automation, 3(1), 43–53.

    Article  Google Scholar 

  • Liegeois, A. (1977). Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Transactions on Systems, Man and Cybernetics, 7, 868–871.

    Article  MATH  Google Scholar 

  • Mason Matthew, T. (1981). Compliance and force control for computer controlled manipulators. IEEE Transactions on Systems, Man and Cybernetics, 11(6), 418–432.

  • Miller, A. T., & Allen, P. K. (2004). Graspit! a versatile simulator for robotic grasping. IEEE Robotics and Automation Magazine, 11(4), 110–122.

    Article  Google Scholar 

  • Nakanishi, J., Cory, R., Mistry, M., Peters, J., & Schaal, S. (2008). Operational space control: A theoretical and empirical comparison. International Journal of Robotics Research, 27(6), 737–757.

    Article  Google Scholar 

  • Nguyen, V. D. (1989). Constructing stable grasps. International Journal of Robotics Research, 8(1), 26–37.

    Article  Google Scholar 

  • Platt, R, Jr, Fagg, A. H., & Grupen, R. A. (2010). Null-space grasp control: Theory and experiments. IEEE Transactions on Robotics, 26(2), 282–295.

    Article  Google Scholar 

  • Romano, J. M., Hsiao, K., Niemeyer, G., Chitta, S., & Kuchenbecker, K. J. (2011). Human-inspired robotic grasp control with tactile sensing. IEEE Transactions on Robotics, 27(6), 1067–1079.

    Article  Google Scholar 

  • Saxena, A., Driemeyer, J., & Ng, A. (2008). Robotic grasping of novel objects using vision. International Journal of Robotics Research, 27(2), 157–173.

    Article  Google Scholar 

  • Sugaiwa, T., Yamaguchi, Y., Iwata, H., and Sugano, S. (2009). Dexterous hand-arm coordinated manipulation using active body-environment contact. In Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS) (pp. 4168–4173).

  • Tahara, K., Arimoto, S., & Yoshida, M. (2009). Dynamic force/torque equilibrium for stable grasping by a triple robotic fingers system. In Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS) (pp. 2257–2263).

  • Trinkle, J. C., Abel, J. M., & Paul, R. P. (June 1988). An investigation of frictionless enveloping grasping in the plane. International Journal of Robotics Research, 7(3), 33–51.

    Google Scholar 

  • Whitney, D. E. (1977). Force feedback control of manipulator fine motions. Journal of Dynamic Systems, Measurement, and Control, 99(2), 91–97.

    Article  Google Scholar 

  • Yoshikawa, T. (2000). Force control of robot manipulators. IEEE Conference on Robotics & Automation, 1, 220–226.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding under the DARPA Autonomous Robotic Manipulation Software Track (ARM-S) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moslem Kazemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazemi, M., Valois, JS., Bagnell, J.A. et al. Human-inspired force compliant grasping primitives. Auton Robot 37, 209–225 (2014). https://doi.org/10.1007/s10514-014-9389-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-014-9389-9

Keywords

Navigation