Skip to main content
Log in

Estimates of the radius of the accretion disk of the dwarf nova Pegasi 2010

  • Published:
Astrophysics Aims and scope

The variations in the radius of the accretion disk of the WZ Sge dwarf nova OT J213806.6+261957 are estimated. The calculations are based on photometric observations of the object during a superoutburst that began on May 6, 2010. Shortly after the maximum, superhumps typical of WZ Sge stars appeared in the light curve of OT J2138. Photometric observations of the object between May 15 and December 2, 2010, reveal a variability in the period of the superhumps, so that it is possible to track the changes in the radius of the accretion disk during the superoutburst in terms of a model of tidal instability in the accretion disks of dwarf novae. It is shown that the radius of the accretion disk can exceed both the radius of the 3:1 resonance and the radius of the tidal effect from the secondary component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Warner, Cataclysmic Variable Stars, Cambridge (1995).

  2. C. Heller, How and why they vary, Springer (2000).

  3. R. Whitehurst, Mon. Notic. Roy. Astron. Soc. 232, 35 (1988).

    ADS  Google Scholar 

  4. M. Hirose and Y. Osaki, PASJ 42, 135 (1990).

    ADS  Google Scholar 

  5. S. H. Lubow, Astrophys. J. 381, 259 (1991).

    Article  ADS  Google Scholar 

  6. S. H. Lubow, Astrophys. J. 381, 268 (1991).

    Article  ADS  Google Scholar 

  7. T. Kato, D. Nogami, et al., PASJ 54, L11 (2002).

    ADS  Google Scholar 

  8. N. Vogt, Astrophys. J. 252, 653 (1982).

    Article  ADS  Google Scholar 

  9. T. Kato, H. Maehara, and B. Monard, PASJ 60, L23 (2008).

    ADS  Google Scholar 

  10. T. Kato, A. Imada, M. Uemura, et al., PASJ 61, S395 (2009).

    ADS  Google Scholar 

  11. T. Kato, H. Maehara, M. Uemura, et al., PASJ 62, 1525 (2010).

    ADS  Google Scholar 

  12. T. Kato, H. Maehara, I. Miller, et al., PASJ 64, 21K (2012).

    ADS  Google Scholar 

  13. T. Kato, F.-J. Hambsch, H. Maehara, et al., arXiv:1210.0678 (2012).

  14. S. H. Lubow, Astrophys. J. 401, 317 (1992).

    Article  ADS  Google Scholar 

  15. K. Uemura, et al., Astron. Astrophys. 432, 261 (2005).

    Article  ADS  Google Scholar 

  16. A. J. Smith, C. A. Haswell, J. R. Murray, et al., Mon. Notic. Roy. Astron. Soc. 378, 3, 785 (2007).

    Article  ADS  Google Scholar 

  17. D. Chochol, N. A. Katysheva, S. Yu. Shugarov, et al., CAOSP 42, 39 (2010).

    Google Scholar 

  18. J. R. Murray, Mon. Notic. Roy. Astron. Soc. 315, 707 (2000).

    Article  ADS  Google Scholar 

  19. M. F. Subbotin, Introduction to Theoretical Astronomy, Nauka, Glav. Red. fiz-mat. lit., Moscow (1968).

    Google Scholar 

  20. J. R. Murray, Mon. Notic. Roy. Astron. Soc. 314, L1 (2000).

    Article  ADS  Google Scholar 

  21. E. P. Pavlenko, T. Kato, O. I. Antonyuk, et al., Astrophysics 54, 483 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. O. Zemko.

Additional information

Translated from Astrofizika, Vol. 56, No. 2, pp. 221-232 (May 2013).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zemko, P.O., Kato, T. Estimates of the radius of the accretion disk of the dwarf nova Pegasi 2010. Astrophysics 56, 203–213 (2013). https://doi.org/10.1007/s10511-013-9279-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-013-9279-4

Keywords

Navigation