Skip to main content

Advertisement

Log in

Localized structures in complex plasmas in the presence of a magnetic field

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In this work, the general framework in which fits our investigation is that of modeling the dynamics of dust grains therein dusty plasma (complex plasma) in the presence of electromagnetic fields. The generalized discrete complex Ginzburg-Landau equation (DCGLE) is thus obtained to model discrete dynamical structure in dusty plasma with Epstein friction. In the collisionless limit, the equation reduces to the modified discrete nonlinear Schrödinger equation (MDNLSE). The modulational instability phenomenon is studied and we present the criterion of instability in both cases and it is shown that high values of damping extend the instability region. Equations thus obtained highlight the presence of soliton-like excitation in dusty plasma. We studied the generation of soliton in a dusty plasma taking in account the effects of interaction between dust grains and theirs neighbours. Numerical simulations are carried out to show the validity of analytical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Download references

Acknowledgements

One of the authors (P. Dongmo) would like to thank Pr. J.P. Nguenang and Yurij Natanzon for discussions regarding numerical simulation, and Dr. G.L. Tiofack for his constructive suggestions. The authors also acknowledge the anonymous referees for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mohamadou.

Appendix

Appendix

The matrix elements \(m_{ij}\) (\(i,j=1,2,3,4\)) are given as follows:

$$\begin{aligned} &m_{1}=\bigl(-4\cos(Q+2q)+6\cos(q+Q)-4\cos(q) \\ &\phantom{m_{1}=}-2\cos(Q-q) +4\cos(2q)\bigr)R_{i}{\psi_{{0}}}^{2} \\ &\phantom{m_{1}=}+2\bigl(\cos(q)-\cos(q+Q)\bigr)P_{i}, \\ &m_{2}=\bigl(S_{r}+\bigl(-8\cos(q+Q)-2\cos(2q)+4\cos(Q) \\ &\phantom{m_{2}=}+4\cos(Q+2q)\bigr)R_{r}\bigr){\psi_{{0}}}^{2} \\ &\phantom{m_{2}=}+\bigl(2\cos(q+Q)-2\cos(q)\bigr)P_{r}, \\ &m_{4}=-m_{10}=\bigl(\bigl(4\cos(Q)-4\cos(q)-2\cos(Q-q) \\ &\phantom{m_{4}=}-2\cos(q+Q)+2\cos(2q)\bigr)R_{r}+S_{r}\bigr){\psi_{{0}}}^{2}, \\ &m_{5}=\bigl(2\cos(Q-q)+4\cos(Q+2q)-4\cos(2q) \\ &\phantom{m_{5}=}-6\cos(q+Q)+4\cos(q)\bigr)R_{r}{\psi_{{0}}}^{2} \\ &\phantom{m_{5}=}+2\bigl(\cos(q+Q)-\cos(q)\bigr)P_{r}, \\ &m_{6}=\bigl(\bigl(-8\cos(q+Q)-2\cos(2q)+4\cos(Q) \\ &\phantom{m_{6}=}+4\cos(Q+2q)\bigr)R_{i}+S_{i}\bigr){\psi_{{0}}}^{2} \\ &\phantom{m_{6}=}+\bigl(2\cos(q+Q)-2\cos(q)\bigr)P_{i}, \\ &m_{8}=-m_{14}=\bigl(\bigl(4\cos(Q)-4\cos(q)-2\cos(Q-q) \\ &\phantom{m_{8}=}-2\cos(q+Q)+2\cos(2q)\bigr)R_{i}+S_{i}\bigr){\psi_{{0}}}^{2}, \\ &m_{11}=-\bigl(-2\cos(q+Q) -4\cos(q)+6\cos(Q-q) \\ &\phantom{m_{11}=}+4\cos(2q) -4\cos(Q-2q)\bigr)R_{i}{\psi_{{0}}}^{2} \\ &\phantom{m_{11}=}-2\bigl(\cos(q)-\cos(Q-q)\bigr)P_{i}, \\ &m_{12}=-\bigl(S_{r}+\bigl(4\cos(Q-2q)+4\cos(Q)-8\cos(Q-q) \\ &\phantom{m_{12}=}-2\cos(2q)\bigr)R_{r}\bigr){\psi_{{0}}}^{2}-2\bigl(\cos(Q-q)-\cos(q)\bigr)P_{r}, \\ &m_{15}=\bigl(-2\cos(q+Q)-4\cos(q)+6\cos(Q-q) \\ &\phantom{m_{15}=}+4\cos(2q)-4\cos(Q-2q)\bigr) R_{r}{\psi_{{0}}}^{2} \\ &\phantom{m_{15}=}+2\bigl(\cos(q)-\cos(Q-q)\bigr) P_{r}, \\ &m_{16}=\bigl(\bigl(8\cos(Q-q)+2\cos(2q)-4\cos(Q-2q) \\ &\phantom{m_{16}=}-4\cos(Q)\bigr)R_{i}-S_{i}\bigr){\psi_{{0}}}^{2} \\ &\phantom{m_{16}=}+2\bigl(\cos(q)-\cos(Q-q)\bigr)P_{i}; \\ &K_{3}=-m_{15}-m_{5}-m_{2}-m_{12}, \\ &K_{2}=m_{4}^{2}+m_{2}m_{12}+m_{5}m_{15}-m_{1}m_{6}+m_{5}m_{2}+m_{2}m_{15} \\ &\phantom{K_{2}=}-m_{11}m_{16}+m_{12}m_{15}+m_{5}m_{12}, \\ &K_{1}=m_{{1}}m_{{4}}m_{{8}}-m_{{5}}m_{{2}}m_{{12}}+m_{{1}}m_{{6}}m_{{15}}+m_{{5}}m_{{11}}m_{{16}} \\ &\phantom{K_{2}=}-m_{{5}}m_{{2}}m_{{15}}+m_{{2}}m_{{11}}m_{{16}}+m_{{8}}m_{{11}}m_{{4}}-m_{{5}}{m_{{4}}}^{2} \\ &\phantom{K_{2}=}-m_{{2}}m_{{12}}m_{{15}}-{m_{{4}}}^{2}m_{{15}}+m_{{1}}m_{{6}}m_{{12}}-m_{{5}}m_{{12}}m_{{15}}, \\ &K_{0}=-m_{{1}}m_{{4}}m_{{8}}m_{{15}}+m_{{5}}m_{{2}}m_{{12}}m_{{15}}-m_{{5}}m _{{2}}m_{{11}}m_{{16}} \\ &\phantom{K_{2}=}-m_{{1}}m_{{6}}m_{{12}}m_{{15}}+m_{{1}}m_{{6}}m_{{11}}m_{{16}}-m_{{5}}m_{{8}}m_{{11}}m_{{4}} \\ &\phantom{K_{2}=}+m_{{1}}{m_{{8}}}^{2}m_{{ 11}}+m_{{5}}{m_{{4}}}^{2}m_{{15}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dongmo Tsopgue, P., Mohamadou, A., Kourakis, I. et al. Localized structures in complex plasmas in the presence of a magnetic field. Astrophys Space Sci 361, 130 (2016). https://doi.org/10.1007/s10509-016-2712-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-016-2712-5

Keywords

Navigation