Skip to main content
Log in

A simple method to detect body morphological abnormalities in juvenile cyprinid fish—a case study on ide Leuciscus idus

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Juvenile fish intensively reared under controlled conditions with formulated dry diets often differ in body shape from those fed natural food. These differences, initially invisible by eye and harmless to the fish, over the course of rearing may develop into severe, irreversible body deformities, which can adversely influence fish performance, welfare and production effectiveness in aquaculture. Early detection of the development of deformities makes it possible to implement a procedure to stop or mitigate them. The aim of this study was to create a simple, quick, reliable and safe morphometric method for the early detection of subtle abnormalities in juvenile fish, based solely on basic analysis of digital photographs of individual fish. Three of the six analysed shape variables detected small, yet highly significant (P < 10−6), differences in body shape between ide juveniles fed a formulated dry diet and those fed natural food. The proportion of the caudal length to the fork length (CLFL) was lower, and the first spiny ray of the caudal fin (angle of the first spiny ray of the upper part of the caudal fin (CRA)) was more bent in fish fed the former diet than those fed the latter. These shape variables (CLFL and the angle CRA) were independent of fish size in both groups. The method described in this study proved to be sufficiently sensitive to detect subtle differences in the body shape of juvenile fish intensively fed different diets. The method is simple and inexpensive and can be easily applied in aquaculture practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the “revolution”. Ital J Zool 71:5–16

    Article  Google Scholar 

  • AL-Harbi AH (2001) Skeletal deformities in cultured common carp Cyprinus carpio L. Asian Fish Sci 14:247–254

    Google Scholar 

  • Baerwald MR, Petersen JL, Hedrick RP, Schisler GJ, May B (2011) A major effect quantitative trait locus for whirling disease resistance identified in rainbow trout (Oncorhynchus mykiss). Heredity 106:920–926

    Article  CAS  PubMed  Google Scholar 

  • Beamish RJ, Sweeting RM, Neville CM, Lange KL, Beacham TD, Preikshot D (2012) Wild chinook salmon survive better than hatchery salmon in a period of poor production. Environ Biol Fish 94:135–148

    Article  Google Scholar 

  • Belk MC, Benson LJ, Rasmussen J, Peck SL (2008) Hatchery-induced morphological variation in an endangered fish: a challenge for hatchery-based recovery efforts. Can J Fish Aquat Sci 65:401–408

    Article  Google Scholar 

  • Blake RW (2004) Fish functional design and swimming performance. J Fish Biol 65:1193–1222

    Article  Google Scholar 

  • Boglione C, Costa C (2011) Skeletal deformities and juvenile quality. In: Pavlidis MA, Mylonas CC (eds) Sparidae: biology and aquaculture of Gilthead Sea bream and other species. Wiley-Blackwell, Oxford, pp. 233–294

    Chapter  Google Scholar 

  • Boglione C, Gavaia P, Koumoundouros G, Gisbert E, Moren M, Fontagne S, Witten PE (2013a) Skeletal anomalies in reared European fish larvae and juveniles. Part 1: normal and anomalous skeletogenic processes. Rev Aquacult 5(Suppl. 1):99–120

    Article  Google Scholar 

  • Boglione C, Gisbert E, Gavaia P, Witten PE, Moren M, Fontagne S, Koumoundouros G (2013b) Skeletal anomalies in reared European fish larvae and juveniles. Part 2: main typologies, occurrences and causative factors. Rev Aquacult 5(Suppl. 1):121–167

    Article  Google Scholar 

  • Boglione C, Gagliardi F, Scardi M, Cataudella S (2001) Skeletal descriptors and quality assessment in larvae and post-larvae of wild-caught and hatchery-reared gilthead sea bream (Sparus aurata L. 1758). Aquaculture 192:1–22

    Article  Google Scholar 

  • Cahu C, Zambonino Infante J, Takeuchi T (2003) Nutritional components affecting skeletal development in fish larvae. Aquaculture 227:245–258

    Article  CAS  Google Scholar 

  • Carral JM, Garcia V, Celada JD, González R, Sáez-Royuela M, González Á (2014) Effects of different photoperiod conditions on juvenile tench (Tinca tinca L.) under intensive rearing. J. Appl. Ichthyol 30(Suppl. 1):44–49

    Article  Google Scholar 

  • Dabrowski K (1984) The feeding of fish larvae: present “state of art” and perspectives. Reprod Nutr Dev 24:807–833

    Article  Google Scholar 

  • Dabrowski K, Hinterleitner S, Sturmbauer C, El-Fiky N, Wieser W (1988) Do carp larvae require vitamin C? Aquaculture 72:295–306

    Article  CAS  Google Scholar 

  • Deschamps M-H, Kacem A, Ventura R, Courty G, Haffray P, Meunier FJ, Sire J-Y (2008) Assessment of “discreet” vertebral abnormalities, bone mineralization and bone compactness in farmed rainbow trout. Aquaculture 279:11–17

    Article  Google Scholar 

  • Divanach P, Boglione C, Menu B, Koumoundouros G, Kentouri M, Cataudella S (1996) Abnormalities in finfish mariculture: an overview of the problem, causes and solutions. In: Chatain B, Saroglia M, Sweetman J, Lavens P (eds) Seabass and seabream culture: problems and prospects. European Aquaculture Society, Oostende, pp. 45–66

    Google Scholar 

  • Divanach P, Papandroulakis N, Anastasiadis P, Koumoundouros G, Kentouri M (1997) Effect of water currents on the development of skeletal deformities in sea bass (Dicentrarchus labrax L.) with functional swimbladder during postlarval and nursery phase. Aquaculture 156:145–155

    Article  Google Scholar 

  • Fernández I, Gisbert E (2010) Senegalese sole bone tissue originated from chondral ossification is more sensitive than dermal bone to high vitamin A content in enriched Artemia. J Appl Ichthyol 26:344–349

    Article  Google Scholar 

  • Fernández I, Gisbert E (2011) The effect of vitamin A on flatfish development and skeletogenesis: a review. Aquaculture 315:34–48

    Article  Google Scholar 

  • Foster K, Bower L, Piller K (2015) Getting in shape: habitat-based morphological divergence for two sympatric fishes. Biol J Linn Soc 114:152–162

    Article  Google Scholar 

  • Fulton CJ (2007) Swimming speed performance in coral reef fishes: field validations reveal distinct functional groups. Coral Reefs 26:217–228

    Article  Google Scholar 

  • Haas TC, Blum MJ, Heins DC (2010) Morphological responses of a stream fish to water impoundment. Biol Lett 6:803–806

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanson KC, Hasler CT, Suski CD, Cooke SJ (2007) Morphological correlates of swimming activity in wild largemouth bass (Micropterus salmoides) in their natural environment. Comp Biochem Physiol A Mol Integr Physiol 148:913–920

    Article  CAS  PubMed  Google Scholar 

  • Hard JJ, Berejikian BA, Tezak EP, Schroder SL, Knudsen CM, Parker LT (2000) Evidence for morphometric differentiation of wild and captively reared adult coho salmon: a geometric analysis. Environ Biol Fish 58:61–73

    Article  Google Scholar 

  • Harris MP, Henke K, Hawkins MB, Witten PE (2014) Fish is fish: the use of experimental model species to reveal causes of skeletal diversity in evolution and disease. J Appl Ichthyol 30:616–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huntingford FA, Adams C, Braithwaite VA, Kadri S, Pottinger TG, Sandøe P, Turnbull JF (2006) Current issues in fish welfare. J Fish Biol 68:332–372

    Article  Google Scholar 

  • Kamiński R, Kamler E, Wolnicki J, Sikorska J, Wałowski J (2010) Condition, growth and food conversion in barbel, Barbus barbus (L.) juveniles under different temperature/diet combinations. J Therm Biol 35:422–427

    Article  Google Scholar 

  • Kamiński R, Korwin-Kossakowski M, Kusznierz J, Myszkowski L, Stanny LA, Wolnicki J (2005) Response of a juvenile cyprinid, lake minnow Eupallasella perenurus (Pallas), to different diets. Aquacult Int 13:479–486

    Article  Google Scholar 

  • Kamiński R, Sikorska J, Wolnicki J (2016) Diet and water temperature affect growth and body deformities in juvenile tench Tinca tinca (L.) reared under controlled conditions. Aquacult. Res. doi:10.1111/are.12974.

    Google Scholar 

  • Kamler E, Wolnicki J (2006) The biological background for the production of stocking material of 11 European rheophilic cyprinids. A review. Arch Hydrobiol Suppl Large Rivers 16:667–687

    Google Scholar 

  • Kamler E, Myszkowski L, Kamiński R, Korwin-Kossakowski M, Wolnicki J (2006) Does overfeeding affect tench Tinca tinca juveniles? Aquacult Int 14:99–111

    Article  Google Scholar 

  • Kamler E, Wolnicki J, Kamiński R, Sikorska J (2008) Fatty acid composition, growth and morphological deformities in juvenile cyprinid, Scardinius erythrophthalmus fed formulated diet supplemented with natural food. Aquaculture 278:69–76

    Article  CAS  Google Scholar 

  • Karahan B, Chatain B, Chavanne H, Vergnet A, Bardon A, Haffray P, Dupont-Nivet M, Vandeputte M (2013) Heritabilities and correlations of deformities and growth-related traits in the European sea bass (Dicentrarchus labrax L) in four different sites. Aquac Res 44:289–299

    Article  Google Scholar 

  • Koumoundouros G, Divanach P, Kentouri M (2001) The effect of rearing conditions on development of saddleback syndrome and caudal fin deformities in Dentex dentex (L.). Aquaculture 200:285–304

    Article  Google Scholar 

  • Lall SP (2002) The minerals. In: Halver JE, Hardy RW (eds) Fish nutrition, 3rd edn. Elsevier Science, San Diego, CA, pp. 259–308

    Google Scholar 

  • Lall SP, Lewis-McCrea LM (2007) Role of nutrients in skeletal metabolism and pathology in fish—an overview. Aquaculture 267:3–19

    Article  CAS  Google Scholar 

  • Latremouille DN (2003) Fin erosion in aquaculture and natural environments. Rev Fish Sci 11:315–335

    Article  Google Scholar 

  • Lauder GV (2000) Function of the caudal fin during locomotion in fishes: kinematics, flow visualization, and evolutionary patterns. Am Zool 40:101–122

    Google Scholar 

  • Lauder GV (2006) Locomotion. In: Evans DH, Claiborne JB (eds) The physiology of fishes. CRC Press, Taylor and Francis Group, Boca Raton, FL, pp. 33487–32742

    Google Scholar 

  • Li D, Hu W, Wang Y, Zhu Z, Fu C (2009) Reduced swimming abilities in fast-growing transgenic common carp Cyprinus carpio associated with their morphological variations. J Fish Biol 74:186–197

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka M (2003) Comparison of meristic variations and bone abnormalities between wild and laboratory-reared red sea bream. Jpn Agric Res Q 37:21–30

    Article  Google Scholar 

  • Moore ABM (2015) Morphological abnormalities in elasmobranchs. J Fish Biol 87:465–471

    Article  CAS  PubMed  Google Scholar 

  • Myszkowski L (2013) Compensatory growth, condition and food utilization in barbel Barbus barbus juveniles reared at different feeding periodicities with a dry diet. J Fish Biol 82:347–353

    Article  CAS  PubMed  Google Scholar 

  • Myszkowski L, Kamiński R, Quiros M, Stanny LA, Wolnicki J (2002) Dry diet-influenced growth, size variability, condition and body deformities in juvenile crucian carp Carassius carassius L. reared under controlled conditions. Arch Pol Fish 10:51–61

    Google Scholar 

  • Myszkowski L, Kamler E, Kwiatkowski S (2010) Weak compensatory growth makes short-term starvation an unsuitable technique to mitigate body deformities of Tinca tinca juveniles in intensive culture. Rev Fish Biol Fish 20:381–388

    Article  Google Scholar 

  • Noble C, Cañon Jones HA, Damsgård B, Flood MJ, Midling KØ, Roque A, Sæther B-S, Cottee SY (2012) Injuries and deformities in fish: their potential impacts upon aquacultural production and welfare. Fish Physiol Biochem 38:61–83

    Article  CAS  PubMed  Google Scholar 

  • Puvanendran V, Calder-Crewe C, Brown JA (2009) Vertebral deformity in cultured Atlantic cod larvae: ontogeny and effects on mortality. Aquac Res 40:1653–1660

    Article  Google Scholar 

  • Rennert B, Kohlmann K, Hack H (2003) A performance test with five different strains of tench (Tinca tinca L.) under controlled warm water conditions. J Appl Ichthyol 19:161–164

    Article  Google Scholar 

  • Sikorska J (2009) Metody przeciwdziałania negatywnym skutkom żywienia starterami młodocianych ryb karpiowatych w warunkach kontrolowanych. [Methods for counteracting negative effects of intensive feeding of juvenile cyprinid fish with dry starter feeds under controlled conditions.]. Ph.D. Thesis, Inland Fisheries Institute in Olsztyn, p.121 [In Polish].

  • Sikorska J (2012) Zróżnicowana reakcja młodocianych ryb karpiowatych na intensywne żywienie paszą w warunkach kontrolowanych. [Different reaction of juvenile cyprinid fish on intensive feeding with dry diet under controlled conditions.]. In: Zakęś Z, Demska-Zakęś K, Kowalska A (eds) Wylęgarnictwo organizmów wodnych—osiągnięcia, wyzwania i perspektywy [Hatchery procedures of water organisms—achievements, challenges and prospects]. Wydawnictwo IRS, Olsztyn, pp. 179–185 [In Polish]

    Google Scholar 

  • Webb PW (1984) Body form, locomotion and foraging in aquatic vertebrates. Am Zool 24:107–120

    Article  Google Scholar 

  • Wimberger PH (1992) Plasticity of fish body shape. The effects of diet, development, family and age in two species of Geophagus (Pisces: Cichlidae). Biol J Linn Soc 45:197–218

    Article  Google Scholar 

  • Wolnicki J, Myszkowski L, Korwin-Kossakowski M, Kamiński R, Stanny LA (2006) Effects of different diets on juvenile tench, Tinca tinca (L.) reared under controlled conditions. Aquacult Int 14:89–98

    Article  Google Scholar 

Download references

Acknowledgments

This work was conducted in the Inland Fisheries Institute (IFI) in Olsztyn, Poland, Statute Project S-001 with IFI approval to perform experiments on animals, ID Number 0056, decision of the Ministry of Education and Science No. 24/2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Myszkowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korwin-Kossakowski, M., Myszkowski, L. & Kamiński, R. A simple method to detect body morphological abnormalities in juvenile cyprinid fish—a case study on ide Leuciscus idus . Aquacult Int 25, 915–925 (2017). https://doi.org/10.1007/s10499-016-0084-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-016-0084-z

Keywords

Navigation