Skip to main content
Log in

Modeling phosphorus metabolism in fish species: an example for juvenile yellow catfish, Pelteobagrus fulvidraco

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

We conducted a growth trial to study how dietary phosphorus (P) influenced utilization and excretion of P for juvenile yellow catfish. Four mathematical models describing different mechanisms of fish phosphorus metabolism were tested, and the best model was selected using Akaike information criterion to describe the relationships between dietary Pavail% and P wastes (dissolved or solid). A linear model showed that solid P waste increased with the increase in dietary total P. A logistic model with an asymptotic dissolved P waste value at 11 g/kg feed provided the best prediction on dissolved P waste by dietary Pavail%. The maximum discharge rate of dissolved P waste relative to dietary P concentration was found at Pavail% = 1.0 and the dissolved P waste of 5 g/kg feed. A Ricker’s dome-shape model estimated that the proportion of dissolved P waste increased with dietary Pavail to the maximum value of 89 % at Pavail% = 1.24 and then started to decrease at Pavail% > 1.24. P excretion seemed to be mainly in the form of dissolved P when fish fed with the feed containing highly available P. Linear regression analysis showed that an increase in dietary P did not affect growth and feed conversion ratio, but resulted in a decrease in phosphorus retention rate and an increase in solid P waste in juvenile yellow catfish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Pavail% :

Dietary available phosphorus (%)

P:

Phosphorus

AIC:

Akaike information criterion

Pi:

Inorganic phosphate

MS 222:

Tricaine methanesulfonate

ADCpi:

Apparent digestibility coefficient of total phosphorus

SGR:

Specific growth rate

FCR:

Food conversion ratio

Prate_ret :

Phosphorus retention rate

References

  • AOAC (1998) Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Washington

    Google Scholar 

  • Avila AM, Basantes HT, Ferraris RP (2000) Dietary phosphate regulates intestinal transport and plasma concentrations of phosphate in rainbow trout. J Comp Physiol B 170:201–209

    Article  PubMed  CAS  Google Scholar 

  • Azevedo PA, Podemski CL, Hesslein RH, Kasian SEM, Findlay DL, Bureau DP (2011) Estimation of waste outputs by a rainbow trout cage farm using a nutritional approach and monitoring of lake water quality. Aquaculture 311:175–186

    Article  Google Scholar 

  • Bolin DW, King RP, Klosterman WW (1952) A simplified method for the determination of chromic oxide (Cr2O3) when used as an inert substance. Science 116:634–635

    Article  PubMed  CAS  Google Scholar 

  • Bureau DP, Cho CY (1999) Phosphorus utilization by rainbow trout (Oncorhynchus mykiss): estimation of dissolved phosphorus waste output. Aquaculture 179:127–140

    Article  CAS  Google Scholar 

  • Bureau DP, Hua K (2010) Towards effective nutritional management of waste outputs in aquaculture, with particular reference to salmonid aquaculture operations. Aquacult Res 41(5):777–792

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Chaimongkol A, Boonyaratpalin M (2001) Effects of ash and inorganic phosphorus in diets on growth and mineral composition of seabass, Lates calcarifer (Bloch). Aquac Res 32(Suppl. 1):53–59

    Article  CAS  Google Scholar 

  • Cho CY, Bureau DP (1997) Reduction of waste output from salmonid aquaculture through feeds and feeding. Prog Fish Cultur 59:155–160

    Article  Google Scholar 

  • Cho CY, Hynes JD, Wood KR, Yoshida HK (1991) Quantitation of fish culture wastes by biological (nutritional) and chemical (limnological) methods; the development of high nutrient dense (HND) diets. In: nutritional strategies and aquaculture waste. Proceedings of the first international symposium on nutritional strategies in management of aquaculture waste (Cowey CB and Cho CY, eds). University of Guelph, Guelph, Ontario, Canada, (pp 51–64) 1990

  • Coloso RM, Basantes SP, King K, Hendrix MA, Fletche JW, Weis P, Ferraris RP (2001) Effect of dietary phosphorus and vitamin D3 on phosphorus levels in effluent from the experimental culture of rainbow trout (Oncorhynchus mykiss). Aquaculture 202:145–161

    Article  CAS  Google Scholar 

  • Coloso RM, King K, Fletcher JW, Hendrix MA, Subramanyam M, Weis P, Ferraris RP (2003a) Phosphorus utilization in rainbow trout (Oncorhynchus mykiss) fed practical diets and its consequences on effluent phosphorus levels. Aquaculture 220:801–820

    Article  CAS  Google Scholar 

  • Coloso RM, King K, Fletcher JW, Weis P, Werner A, Ferraris RP (2003b) Dietary P regulates phosphate transporter expression, phosphatase activity, and effluent P partitioning in trout culture. J Comp Physiol B 173:519–530

    Article  PubMed  CAS  Google Scholar 

  • Dias RS, Kebreab E, Vitti DMSS, Roque AP, Bueno ICS, France J (2006) A revised model for studying phosphorus and calcium kinetics in growing sheep. J Anim Sci 84:2787–2794

    Article  PubMed  CAS  Google Scholar 

  • Eya JC, Lovell RT (1997) Available phosphorus requirements of food-size channel catfish (Ictalurus punctatus) fed practical diets in ponds. Aquaculture 154:283–291

    Article  CAS  Google Scholar 

  • Fan MZ, Archbold T, Sauer WC, Lackeyram D, Rideout T, Gao Y, de Lange CFM, Hacker RR (2001) Novel methodology allows simultaneous measurement of true phosphorus digestibility and the gastrointestinal endogenous phosphorus outputs in studies with pigs. J Nutr 131:2388–2396

    PubMed  CAS  Google Scholar 

  • FAO (2013). Trends in the fisheries sector. FAO statistical yearbook, 146–148. http://www.fao.org/docrep/018/i3107e/i3107e03.pdf (Last Accessed 17 Jun 2014)

  • Green JA, Brannon EL, Hardy RW (2002) Effects of dietary phosphorus and lipid levels on utilization and excretion of phosphorus and nitrogen by rainbow trout (Oncorhynchus mykiss). 2. Production-scale study. Aquacult Nutr 8:291–298

    Article  CAS  Google Scholar 

  • Hala V, Dijkstra J, Babinszky L, Verstegen MWA, Gerrits WJJ (2004) Modelling of nutrient partitioning in growing pigs to predict their anatomical body composition. 1. Model description. Brit J Nutr 92:707–723

    Article  Google Scholar 

  • Hardy RW, Fairgrieve WT, Scott TM (1993) Periodic feeding of low-phosphorus diet and phosphorus retention in rainbow trout Oncorhynchus mykiss. In: Kauchik SJ, Luquet P (eds) Fish nutrition practice, 61st edn. INRA, Paris, pp 403–412

    Google Scholar 

  • Hattenhauer O, Traebert M, Murer H, Biber J (1999) Regulation of small intestinal Na-P i type IIb cotransporter by dietary phosphate intake. Am J Physiol 77:G756–G762

    Google Scholar 

  • Hepher B, Sandbank S (1984) The effect of phosphorus supplementation to common carp diets on fish growth. Aquaculture 36:323–332

    Article  CAS  Google Scholar 

  • Hua K (2005) Modeling phosphorus utilization in salmonid fish species. Ph.D thesis, the University of Guelph

  • Hua K, Lange CFM, Niimi AJ, Cole G, Moccia RD, Fan M, Bureau DP (2008) A factorial model to predict phosphorus waste output of rainbow trout (Oncorhynchus mykiss). Aquacult Res 39:1059–1068

    Article  Google Scholar 

  • Kebreab E, Abdalla AL, DeCarvalho FFR, DeResende K, Crompton LA, France J (2000) A kinetic model of phosphorus metabolism in growing goats. J Anim Sci 78:2706–2712

    PubMed  Google Scholar 

  • Kebreab E, Mills JAN, Crompton LA, Bannink A, Dijkstra J, Gerrits WJJ, France J (2004) An integrated mathematical model to evaluate nutrient partition in dairy cattle between the animal and its environment. Anim Feed Sci Technol 112:131–154

    Article  CAS  Google Scholar 

  • Kebreab E, Schulin-Zeuthen M, Lopez S, Soler J, Dias RS, Lange CFM, France J (2007) Comparison of mathematical functions to describe growth and efficiency of phosphorus utilization in growing pigs. J Anim Sci 85:2498–2507

    Article  PubMed  CAS  Google Scholar 

  • Ketola HG, Richmond ME (1994) Requirement of rainbow trout for dietary phosphorus and its relationship to the amount discharged in hatchery effluents. T Am Fish Soc 123:587–594

    Article  CAS  Google Scholar 

  • Lall SP (1991) Digestibility, metabolism and excretion of dietary phosphorus in fish. In: Nutritional strategies and aquaculture waste. Proceedings of the first international symposium on nutritional strategies in management of aquaculture waste (Cowey CB & Cho CY, eds). pp. 21–36. University of Guelph, Guelph

  • Lall SP (2002) The minerals. In: Halver JE, Hardy RW (eds) Fish nutrition, 3rd edn. Academic Press, London, pp 259–308

    Google Scholar 

  • Levi M, Kempson SA, Lõtscher M, Biber J, Murer H (1996) Molecular regulation of renal phosphate transport. J Membr Biol 154:1–9

    Article  PubMed  CAS  Google Scholar 

  • Luo Z, Tan XY, Liu X, Wang WM (2010) Dietary total phosphorus requirement of juvenile yellow catfish Pelteobagrus fulvidraco. Aquac Int 18:897–908

    Article  CAS  Google Scholar 

  • NRC (2011) Nutrient requirements of fish and shrimp. Committee on nutrient requirements of fish and shrimp editors. The National Academies Press, Washington, pp 168–169

    Google Scholar 

  • Prabhu PAJ, Schrama JW, Kaushik SJ (2013) Quantifying dietary phosphorus requirement of fish-a meta-analytic approach. Aquacult Nutr 19:233–249

    Article  Google Scholar 

  • Rodehutscord M (1996) Response of rainbow trout Oncorhynchus mykiss growing from 50 to 200 g to supplements of dibasic sodium phosphate in a semi-purified diet. J Nutr 126:324–331

    PubMed  CAS  Google Scholar 

  • Rodehutscord M, Gregus Z, Pfeffe E (2000) Effect of phosphorus intake on faecal and non-faecal phosphorus excretion in rainbow trout (Oncorhynchus mykiss) and the consequences for comparative phosphorus availability studies. Aquaculture 188:383–398

    Article  CAS  Google Scholar 

  • Roy PK, Lall SP (2003) Dietary P requirement of juvenile haddock (Melanogrammus aeglefinus L.). Aquaculture 221:451–468

    Article  CAS  Google Scholar 

  • Segawa H, Kaneko I, Yamanaka S, Ito M, Kuwahata M, Inoue Y, Kato S, Miyamoto K (2004) Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice. Am J Physiol Renal Physiol 287:F39–F47

    Article  PubMed  CAS  Google Scholar 

  • Sewell M (2008) Model selection. http://www.modelselection.org/model-selection.pdf Accessed 31 Jan 2015

  • Shao QJ, Ma JJ, Xu ZR, Hu WL, Xu JZ, Xie SQ (2008) Dietary phosphorus requirement of juvenile black seabream, Sparus macrocephalus. Aquaculture 277:92–100

    Article  CAS  Google Scholar 

  • Skonberg DE, Yogev L, Hardy RW, Dong FM (1997) Metabolic response to dietary phosphorus intake in rainbow trout (Oncorhynchus mykiss). Aquaculture 157:11–24

    Article  CAS  Google Scholar 

  • Talbot C, Hole R (1994) Fish diets and the control of eutrophication resulting from aquaculture. J Appl Ichthyol 10:258–270

    Article  Google Scholar 

  • Tang Q, Wang C, Xie C, Jin J, Huang Y (2012) Dietary available phosphorus affected growth performance, body composition, and hepatic antioxidant property of juvenile yellow catfish Pelteobagrus fulvidraco. Scient World J 2012:987570. doi:10.1100/2012/987570

    Google Scholar 

  • Tedeschi LO (2006) Assessment of the adequacy of mathematical models. Agr Syst 89:225–247

    Article  Google Scholar 

  • Tedeschi LO, Fox DG, Sainz RD, Barioni LG, Medeiros SR, Boin C (2005) Using mathematical models in ruminant nutrition. Scient Agric 62(1):76–91

    Article  Google Scholar 

  • Vens-Cappell B (1985) Methodical studies on digestion in trout. (1) Reliability of digestion coefficients in relation to methods for faeces collection. Aquacult Eng 4(1):33–49

    Article  Google Scholar 

  • Vielma J, Lall SP (1998) Phosphorus utilization by Atlantic salmon (Salmo salar) reared in freshwater is not influenced by higher dietary calcium intake. Aquaculture 160:117–128

    Article  CAS  Google Scholar 

  • Vitti DMSS, Kebreab E, Abdalla AL, De Carvalho FFR, De Resende K, Crompton LA, France J (2000) A kinetic model of phosphorus metabolism in growing goats. J Anim Sci 78:2706–2712

    PubMed  CAS  Google Scholar 

  • Wang Z, Goonewardene LA (2004) The use of MIXED models in the analysis of animal experiments with repeated measures data. Can J Anim Sci 84:1–11

    Article  Google Scholar 

  • Wiesmann D, Scheid H, Pfeffer E (1988) Water pollution with phosphorus of dietary origin by intensively fed rainbow trout (Salmo gairdneri Rich.). Aquaculture 69:263–270

    Article  CAS  Google Scholar 

  • Yang SD, Lin TS, Liu FG, Liou CH (2006) Influence of dietary phosphorus levels on growth, metabolic response and body composition of juvenile silver perch (Bidyanus bidyanus). Aquaculture 253:592–601

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This present study was financially supported by the National Natural Science Foundation of China (Project Nos. 31172421, 30901105) and Fundamental Research Funds for the Central Universities (2013PY076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingming Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Tang, Q., Luo, W. et al. Modeling phosphorus metabolism in fish species: an example for juvenile yellow catfish, Pelteobagrus fulvidraco . Aquacult Int 24, 281–294 (2016). https://doi.org/10.1007/s10499-015-9925-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-015-9925-4

Keywords

Navigation