Skip to main content

Advertisement

Log in

Genetic parameter estimates and genotype by environment interaction analyses for early growth traits in grass carp (Ctenopharyngodon idella)

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Despite the importance of grass carp (Ctenopharyngodon idella) in aquaculture worldwide, selective breeding programs for growth traits remain limited. This study aimed to assess the genetic effects and extent of genotype by environment interactions (G × E) for early growth traits in grass carp. Fifty-eight full-sib grass carp families (n = 1704; 20 dams and 15 sires), cultured in two ponds, were reconstructed using molecular parentage analysis. Based on the animal model and restricted maximum likelihood (REML) algorithm, the heritability of standard length (SL), body weight (BW), and condition factor (K) of grass carp at 40 dph (days post-hatch) were calculated as 0.304, 0.307, and 0.150, respectively (P < 0.05). Significant genetic and phenotypic correlations were found between SL and BW, 0.838 and 0.958, respectively (P < 0.01). The REML likelihood-ratio test between the maternal effects model and animal model showed maternal effects were not significant in early-stage grass carp (P > 0.05). A significant interaction effect was found between family and environment (P < 0.01), while Pearson’s correlations for SL and BW of grass carp in different ponds were 0.773 and 0.630, respectively. Differential stabilities among families were responded to environments. These results indicate that the early growth traits of grass carp could be improved by exploiting additive genetic effects through selective breeding. Environmental effects and family stability should be taken into account in practical breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrew RL, Peakall R, Wallis IR, Wood JT, Knight EJ, Foley WJ (2005) Marker-based quantitative genetics in the wild? The heritability and genetic correlation of chemical defenses in Eucalyptus. Genetics 171:1989–1998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Annicchiarico P (2002) Genotype × environment interactions—challenges and opportunities for plant breeding and cultivar recommendations. FAO Plant Production and Protection Paper—174, Rome, 115

  • Arce SM, Argue BJ, Thompson BA, Moss SM (2003) Evaluation of a fluorescent, alphanumeric tagging system for penaeid shrimp and its application in selective breeding programs. Aquaculture 228:267–278

    Article  Google Scholar 

  • Bentsen HB, Olesen I (2002) Designing aquaculture mass selection programs to avoid high inbreeding rates. Aquaculture 204:349–359

    Article  Google Scholar 

  • Bérénos C, Ellis PA, Pilkington JG, Pemberton JM (2014) Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches. Mol Ecol 23:3434–3451

    Article  PubMed Central  PubMed  Google Scholar 

  • Bijma P, Wade MJ (2008) The joint effects of kin, multilevel selection and indirect genetic effects on response to genetic selection. J Evol Biol 21:1175–1188

    Article  CAS  PubMed  Google Scholar 

  • Brokordt KB, Winkler FM, Farías WJ, González RC, Castaño F, Fullsack P, Herbinger CM (2014) Changes of heritability and genetic correlations in production traits over time in red abalone (Haliotis rufescens) under culture. Aquac Res. doi:10.1111/are.12382

    Google Scholar 

  • Chen Q, Wang C, Lu G, Zhao J, Chapman DC, Zsigmond J, Li S (2012) Microsatellite genetic diversity and differentiation of native and introduced grass carp populations in three continents. Genetica 140:115–123

    Article  PubMed  Google Scholar 

  • Crandell PA, Gall GAE (1993) The genetics of body weight and its effect on early maturity based on individually tagged rainbow trout (Oncorhynchus mykiss). Aquaculture 117:77–93

    Article  Google Scholar 

  • DeHaan PW, Jordan GR, Ardren WR (2007) Use of genetic tags to identify captive-bred pallid sturgeon (Scaphirhynchus albus) in the wild: improving abundance estimates for an endangered species. Conserv Genet 11:935–949

    Article  Google Scholar 

  • Dodds KG, Tate ML, Sise JA (2005) Genetic evaluation using parentage information from genetic markers. J Anim Sci 83:2271–2279

    CAS  PubMed  Google Scholar 

  • Domingos JA, Smith-Keune C, Robinson N, Loughnan S, Harrison P, Jerry DR (2013) Heritability of harvest growth traits and genotype–environment interactions in barramundi, Lates calcarifer (Bloch). Aquaculture 402–403:66–75

    Article  Google Scholar 

  • Dumas A, France J, Bureau D (2010) Modelling growth and body composition in fish nutrition: where have we been and where are we going? Aquac Res 41:161–181

    Article  Google Scholar 

  • Dupont-Nivet M, Vandeputte M, Chevassus B (2002) Optimization of factorial mating designs for inference on heritability in fish species. Aquaculture 204:361–370

    Article  Google Scholar 

  • Dupont-Nivet M, Vandeputte M, Vergnet A, Merdy O, Haffray P, Chavanne H, Chatain B (2008) Heritabilities and G × E interactions for growth in the European sea bass (Dicentrarchus labrax L.) using a marker-based pedigree. Aquaculture 275:81–87

    Article  CAS  Google Scholar 

  • Dupont-Nivet M, Medale F, Leonard J, Le Guillou S, Tiquet F, Quillet E, Geurden I (2009) Evidence of genotype–diet interactions in the response of rainbow trout (Oncorhynchus mykiss) clones to a diet with or without fishmeal at early growth. Aquaculture 295:15–21

    Article  Google Scholar 

  • Dupont-Nivet M, Karahan-Nomm B, Vergnet A, Merdy O, Haffray P, Chavanne H, Chatain B, Vandeputte M (2010) Genotype by environment interactions for growth in European seabass (Dicentrarchus labrax) are large when growth rate rather than weight is considered. Aquaculture 306:365–368

    Article  Google Scholar 

  • Falconer DS (1952) The problem of environment and selection. Am Nat 86:293–298

    Article  Google Scholar 

  • FAO (2012) The state of World Fisheries and Aquaculture 2012, Rome

  • Finlay KW, Wilkinson GN (1963) The analysis of adaptation in a plant breeding program. Aust J Agric Res 14:742–754

    Article  Google Scholar 

  • Fishback AG, Danzmann RG, Ferguson MM, Gibson JP (2002) Estimates of genetic parameters and genotype by environment interactions for growth traits of rainbow trout (Oncorhynchus mykiss) as inferred using molecular pedigrees. Aquaculture 206:137–150

    Article  Google Scholar 

  • Fu J, Shen Y, Xu X, Chen Y, Li D, Li J (2013a) Multiplex microsatellite PCR sets for parentage assignment of grass carp (Ctenopharyngodon idella). Aquac Int 21:1195–1207

    Article  CAS  Google Scholar 

  • Fu J, Li J, Shen Y, Wang R, Xuan Y, Xu X, Chen Y (2013b) Genetic variation analysis of wild populations of grass carp (Ctenopharyngodon idella) using microsatellite markers. Hereditas 35(2):192–201

    Article  CAS  PubMed  Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2009) ASReml user guide release 3.0. VSN International Ltd., Hemel Hempstead, HP1 1ES, UK

  • Gjerde B, Schaeffer LR (1989) Body traits in rainbow trout: II. Estimates of heritabilities and of phenotypic and genetic correlation. Aquaculture 80:25–44

    Article  Google Scholar 

  • Gray AK, Joyce JJ, Wertheimer AC (2008) Unanticipated departures from breeding designs can be detected using microsatellite DNA parentage analyses. Aquaculture 280:71–75

    Article  CAS  Google Scholar 

  • Haffray P, Vandeputte M, Petit V, Pincent C, Chatain B, Chapuis H, Mériaux JC, Coudurier B, Quillet E, Dupont-Nivet M (2012) Minimizing maternal effect in salmonid families mixed since eyed stages and a posteriori DNA-pedigreed. Livestock Science 150:170–178

    Article  Google Scholar 

  • Herlin M, Delghandi M, Wesmajervi M, Taggart JB, McAndrew BJ, Penman DJ (2008) Analysis of the parental contribution to a group of fry from a single day of spawning from a commercial Atlantic cod (Gadus morhua) breeding tank. Aquaculture 274:218–224

    Article  Google Scholar 

  • Hutchings JA (2011) Old wine in new bottles: reaction norms in salmonid fishes. Heredity 106:421–437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jerry DR, Stewart T, Purvis IW, Piper LR (2001) Evaluation of visual implant elastomer and alphanumeric internal tags as a method to identify juveniles of the freshwater crayfish, Cherax destructor. Aquaculture 193:149–154

    Article  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kim JH, Lee JH, Kim HC, Noh JK, Kang JH, Kim KK (2011) Body shape and growth in reciprocal crosses of wild and farmed olive flounder, Paralichthys olivaceus. J World Aquac Soc 42:258–274

    Article  Google Scholar 

  • Kong N, Li Q, Yu H, Kong L (2013) Heritability estimates for growth-related traits in the Pacific oyster (Crassostrea gigas) using a molecular pedigree. Aquac Res. doi:10.1111/are.12205

    Google Scholar 

  • Kristjánsson T, Arnason T (2014) Heritability of economically important traits in the Atlantic cod Gadus morhua L. Aquac Res. doi:10.1111/are.12496

    Google Scholar 

  • Kruuk LEB, Hadfield JD (2007) How to separate genetic and environmental causes of similarity between relatives. J Evol Biol 20:1890–1903

    Article  CAS  PubMed  Google Scholar 

  • Kruuk LEB, Slate J, Wilson AJ (2008) New answers for old questions: the evolutionary quantitative genetics of wild animal populations. Annu Rev Ecol Evol Syst 39:525–548

    Article  Google Scholar 

  • Li S, Fang F (1990) On the geographical distribution of the four kinds of pond-cultured carps in China. Acta Zool Sin 36(3):244–250

    Google Scholar 

  • Liu F, Xia J, Bai Z, Fu J, Li J, Yue GH (2009) High genetic diversity and substantial population differentiation in grass carp (Ctenopharyngodon idella) revealed by microsatellite analysis. Aquaculture 297:51–56

    Article  CAS  Google Scholar 

  • Lucas T, Macbeth M, Degnan SM, Knibb W, Degnan BM (2006) Heritability estimates for growth in the tropical abalone Haliotis asinina using microsatellites to assign parentage. Aquaculture 259:146–152

    Article  Google Scholar 

  • Luo W, Zeng C, Deng W, Robinson N, Wang W, Gao Z (2014) Genetic parameter estimates for growth-related traits of blunt snout bream (Megalobrama amblycephala) using microsatellite-based pedigree. Aquac Res 45(11):1881–1888

    Google Scholar 

  • Macbeth M (2005) Rates of inbreeding using DNA fingerprinting in aquaculture breeding programmes at various broodstock fitness levels—a simulation study. Aust J Exp Agric 45:893–900

    Article  CAS  Google Scholar 

  • Macbeth GM, Palmer PJ (2011) A novel breeding programme for improved growth in barramundi Lates calcarifer (Bloch) using foundation stock from progeny-tested parents. Aquaculture 318:325–334

    Article  Google Scholar 

  • Martín I, Rasines I, Gómez M, Rodríguez C, Martínez P, Chereguini O (2014) Evolution of egg production and parental contribution in Senegalese sole, Solea senegalensis, during four consecutive spawning seasons. Aquaculture 424–425:45–52

    Article  Google Scholar 

  • Mas-Muñoz J, Blonk R, Schrama JW, Arendonk JV, Komen H (2013) Genotype by environment interaction for growth of sole (Solea solea) reared in an intensive aquaculture system and in a semi-natural environment. Aquaculture 410–411:230–235

    Article  Google Scholar 

  • Moav R, Hulata G, Wohlfarth G (1975) Genetic differences between the Chinese and European races of the common carp. Heredity 34:323–340

    Article  CAS  PubMed  Google Scholar 

  • Nash RDM, Valencia AH, Geffen AJ (2006) The origin of Fulton’s condition factor—setting the record straight. Fisheries 31(5):236–238

    Google Scholar 

  • Navarro A, Zamorano MJ, Hildebrandt S, Ginés R, Aguilera C, Afonso JM (2009) Estimates of heritabilities and genetic correlations for growth and carcass traits in gilthead seabream (Sparus auratus L.), under industrial conditions. Aquaculture 289:225–230

    Article  Google Scholar 

  • Nguyen NH, Ponzoni RW, Abu-Bakar KR, Hamzah A, Khaw HL, Yee HY (2010) Correlated response in fillet weight and yield to selection for increased harvest weight in genetically improved farmed tilapia (GIFT strain), Oreochromis niloticus. Aquaculture 305:1–5

    Article  Google Scholar 

  • Nguyen TTT, Hayes BJ, Ingram BA (2014) Genetic parameters and response to selection in blue mussel (Mytilus galloprovincialis) using a SNP-based pedigree. Aquaculture 420–421:295–301

    Article  Google Scholar 

  • Ninh NH, Ponzoni RW, Nguyen NH, Woolliams JA, Taggart JB, McAndrew BJ, Pennman DJ (2011) A comparison of communal and separate rearing of families in selective breeding of common carp (Cyprinus carpio): estimation of genetic parameters. Aquaculture 322–323:39–46

    Article  Google Scholar 

  • Perry GML, Martyniuk CM, Ferguson MM, Danzmann RG (2005) Genetic parameters for upper thermal tolerance and growth-related traits in rainbow trout (Oncorhynchus mykiss). Aquaculture 250:120–128

    Article  CAS  Google Scholar 

  • Pierce L, Palti Y, Silverstein J, Barrow F, Hallerman E, Parsons J (2008) Family growth response to fishmeal and plant-based diets shows genotype × diet interaction in rainbow trout (Oncorhynchus mikiss). Aquaculture 278:37–42

    Article  Google Scholar 

  • Rasanen K, Kruuk LEB (2007) Maternal effects and evolution at ecological time-scales. Funct Ecol 21:408–421

    Article  Google Scholar 

  • Robertson A (1959) The sampling variance of the genetic correlation coefficient. Biometrics 15:469–485

    Article  Google Scholar 

  • Rutten MJM, Bovenhuis H, Komen H (2004) Modeling fillet traits based on body measurements in three Nile tilapia strains (Oreochromis niloticus L.). Aquaculture 231:113–122

    Article  Google Scholar 

  • Sae-Lim P, Komen H, Kause A (2010) Bias and precision of estimates of genotype-by-environment interaction: a simulation study. Aquaculture 310:66–73

    Article  Google Scholar 

  • Saillant E, Ma L, Wang X, Gatlin DM, Gold JR (2007) Heritability of juvenile growth traits in red drum (Sciaenops ocellatus L.). Aquac Res 38:781–788

    Article  Google Scholar 

  • SAS-Institute (1996) Statistical analysis system. SAS-Institute, Cary

    Google Scholar 

  • Sylvén S, Rye M, Simianer H (1991) Interaction of genotype with production system for slaughter weight in rainbow trout (Oncorhynchus mykiss). Livest Prod Sci 28:253–263

    Article  Google Scholar 

  • Tosh JJ, Garber AF, Trippel EA, Robinson JAB (2010) Genetic, maternal, and environmental variance components for body weight and length of Atlantic cod at 2 points in life. J Anim Sci 88:3513–3521

    Article  CAS  PubMed  Google Scholar 

  • Trọng TQ, Mulder HA, van Arendonk JAM, Komen H (2013) Heritability and genotype by environment interaction estimates for harvest weight, growth rate, and shape of Nile tilapia (Oreochromis niloticus) grown in river cage and VAC in Vietnam. Aquaculture 384–387:119–127

    Article  Google Scholar 

  • Vandeputte M, Kocour M, Mauger S, Dupont-Nivet M, De Guerry D, Rodina M, Vallod D, Chevassus B, Linhart O (2004) Heritability estimates for growth-related traits using microsatellite parentage assignment in juvenile common carp (Cyprinus carpio L.). Aquaculture 235:223–236

    Article  CAS  Google Scholar 

  • Vandeputte M, Rossignol M, Pincent C (2011) From theory to practice: empirical evaluation of the assignment power of marker sets for pedigree analysis in fish breeding. Aquaculture 314:80–86

    Article  Google Scholar 

  • Vladić T, Forsberg LA, Torbjorn J (2010) Sperm competition between alternative reproductive tactics of the Atlantic salmon in vitro. Aquaculture 302:265–269

    Article  Google Scholar 

  • Wang CM, Lo LC, Zhu ZY, Lin G, Feng F, Li J, Yang WT, Chou R, Lim HS, Orban L, Yue GH (2008) Estimating reproductive success of brooders and heritability of growth traits in Asian sea bass (Lates calcarifer) using microsatellites. Aquac Res 39:1612–1619

    Google Scholar 

  • Xia JH, Liu F, Zhu ZY, Fu J, Feng J, Li J, Yue GH (2010) A consensus linkage map of the grass carp (Ctenopharyngodon idella) based on microsatellites and SNPs. BMC Genomics 11:135

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the collaboration provided by the Chinese Carp Breeding Center of Suzhou Wujiang Area Aquaculture Co., Ltd. (Jiangsu Province, China). This work was financed by the China Agriculture Research System (CARS-46-04), the National Key Technology R&D Program of China (2012BAD26B02), the Agricultural Seed Development Program of Shanghai (2012NY10), and Shanghai Universities First-class Disciplines Project of Fisheries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiale Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Shen, Y., Xu, X. et al. Genetic parameter estimates and genotype by environment interaction analyses for early growth traits in grass carp (Ctenopharyngodon idella). Aquacult Int 23, 1427–1441 (2015). https://doi.org/10.1007/s10499-015-9894-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-015-9894-7

Keywords

Navigation