Skip to main content
Log in

Arsenic in Porewaters of the Unsaturated Zone of an Argentinean Watershed: Adsorption and Competition with Carbonate as Important Processes that Regulate its Concentration

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

The arsenic (As) concentration in porewaters of the unsaturated (vadose) zone of a watershed located in the Chaco-Pampean Plain of Argentina was investigated. A water displacement method using carbon tetrachloride was applied to the sediments in order to obtain the water samples, which could not be obtained by a simple high-speed centrifugation method. The CD-MUSIC surface complexation model was applied to calculate arsenate adsorption on sediments, arsenate concentration in porewaters in contact with the sediments and effects of carbonate. Ferrihydrite was considered to represent the active adsorbing material in the sediments. Therefore, proton adsorption (surface charge) data and arsenate adsorption isotherms obtained with a synthetic ferrihydrite were used to calibrate the CD-MUSIC model. Arsenate and carbonate concentrations in the studied porewaters were positively correlated. The model was able to predict As concentration within a factor of two in most samples. Carbonate affects As concentration by competing with arsenate species for adsorption sites on the mineral surface. As it occurs with groundwater samples of the saturated zone in many aquifers, this article shows for the first time that adsorption–desorption processes also seem to control As concentration in oxic porewaters of the unsaturated zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anawar HM, Akai J, Komaki K, Terao H, Yoshioka T, Ishizuka T, Safiullah S, Kato K (2003) Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes. J Geochem Explor 77:109–131

    Article  Google Scholar 

  • Anawar HM, Akai J, Sakugawa H (2004) Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater. Chemosphere 54:753–762

    Article  Google Scholar 

  • Antelo J, Avena M, Fiol S, López R, Arce F (2005) Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite–water interface. J Colloid Interface Sci 285:476–486

    Article  Google Scholar 

  • Antelo J, Fiol S, Pérez C, Mariño S, Arce F, Gondar D, López R (2010) Analysis of phosphate adsorption onto ferrihydrite using the CD-MUSIC model. J Colloid Interface Sci 347:112–119

    Article  Google Scholar 

  • Appelo CAJ, Van der Weiden MJJ, Tournassat C, Charlet L (2002) Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ Sci Technol 36:3096–3103

    Article  Google Scholar 

  • Arai Y, Sparks DL (2001) ATR–FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite–water interface. J Colloid Interface Sci 241:317–326

    Article  Google Scholar 

  • Bargar JR, Kubicki JD, Reitmeyer R, Davis JA (2005) ATR–FTIR spectroscopic characterization of coexisting carbonate surface complexes on hematite. Geochim Cosmochim Acta 69:1527–1542

    Article  Google Scholar 

  • Biswas A, Gustafsson JP, Neidhardt H, Halder D, Kundu AK, Chatterjee D, Berner Z, Bhattacharya P (2014) Role of competing ions in the mobilization of arsenic in groundwater of Bengal Basin: insight from surface complexation modeling. Water Res 55:30–39

    Article  Google Scholar 

  • Bravo O, Blanco M, Amiotti N (2007) Control factors in the segregation of Mollisols and Aridisols of the semiarid–arid transition of Argentina. Catena 70:220–228

    Article  Google Scholar 

  • Charlet L, Chakraborty S, Appelo CAJ, Roman-Ross G, Nath B, Ansari AA, Lanson M, Chatterjee D, Basu Mallik S (2007) Chemodynamics of an arsenic “hotspot” in a West Bengal aquifer: a field and reactive transport modeling study. Appl Geochem 22:1273–1292

    Article  Google Scholar 

  • Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurrence and uses. Wiley, Weinheim

    Google Scholar 

  • Dzombak DA, Morel FMM (1990) Surface complexation modeling. hydrous ferric oxide. Wiley, New York

    Google Scholar 

  • Frau F, Biddau R, Fanfani L (2008) Effect of major anions on arsenate desorption from ferrihydrite-bearing natural samples. Appl Geochem 23:1451–1466

    Article  Google Scholar 

  • Gustafsson JP (2001) Modelling competitive anion adsorption on oxide minerals and an allophane-containing soil. Eur J Soil Sci 52:639–653

    Article  Google Scholar 

  • Gustafsson JP (2006) Arsenate adsorption to soils: modelling the competition from humic substances. Geoderma 136:320–330

    Article  Google Scholar 

  • Hammarlund L, Piñones J (2009) Arsenic in geothermal waters of Costa Rica. Master Thesis. Royal Institute of Technology (KTH), Sweden. http://www2.lwr.kth.se/Publikationer/PDF_Files/LWR_EX_09_02.pdf

  • Harrington R, Hausner DB, Bhandari N, Strongin DR, Chapman KW, Chupas PJ, Middlemiss DS, Grey CP, Parise JB (2010) Investigation of surface structures by powder diffraction: a differential pair distribution function study on arsenate sorption on ferrihydrite. Inorg Chem 49:325–330

    Article  Google Scholar 

  • Hausner DB, Bhandari N, Pierre-Louis AM, Kubicki JD, Strongin DR (2009) Ferrihydrite reactivity toward carbon dioxide. J Colloid Interface Sci 337:492–500

  • Hiemstra T, Van Riemsdijk WH (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J Colloid Interface Sci 179:488–508

    Article  Google Scholar 

  • Hiemstra T, Van Riemsdijk WH (1999) Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides. J Colloid Interface Sci 210:182–193

    Article  Google Scholar 

  • Hiemstra T, Van Riemsdijk WH (2006) On the relationship between charge distribution, surface hydration and the structure of the interface of metal hydroxides. J Colloid Interface Sci 301:1–18

    Article  Google Scholar 

  • Hiemstra T, Van Riemsdijk WH (2009) A surface structural model for ferrihydrite: I. Sites related to primary charge, molar mass and mass density. Geochim Cosmochim Acta 73:4423–4436

    Article  Google Scholar 

  • Hiemstra T, Rahnemaie R, Van Riemsdijk WH (2004) Surface complexation of carbonate on goethite: IR spectroscopy, structure and charge distribution. J Colloid Interface Sci 278:282–290

    Article  Google Scholar 

  • Hiemstra T, Antelo J, Rahnemaie R, Van Riemsdijk WH (2010) Nanoparticles in natural systems I: the effective reactive surface area of the natural oxide fraction in field samples. Geochim Cosmochim Acta 74:41–58

  • Hofmann A, Van Beinum W, Meeussen JCL, Kretzschmar R (2005) Sorption kinetics of strontium in porous hydrous ferric oxide aggregates II. Comparison of experimental results and model predictions. J Colloid Interface Sci 283:29–40

    Article  Google Scholar 

  • Jessen S, Postma D, Larsen F, Nhan PQ, Hoa LQ, Trang PTK, Long TV, Viet PH, Jakobsen R (2012) Surface complexation modeling of groundwater arsenic mobility: results of a forced gradient experiment in a Red River flood plain aquifer, Vietnam. Geochim Cosmochim Acta 98:186–201

    Article  Google Scholar 

  • Keizer MG, Van Riemsdijk WH (1998) ECOSAT: Equilibrium calculation of speciation and transport, technical report. Department Soil Science and Plant Nutrition. Wageningen Agricultural University, Wageningen

    Google Scholar 

  • Kosmulski M (2011a) Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Adv Colloid Interface Sci 152:14–25

    Article  Google Scholar 

  • Kosmulski M (2011b) The pH-dependent surface charging and points of zero charge V. Update. J Colloid Interface Sci 353:1–15

    Article  Google Scholar 

  • Kubicki J (2005) Comparison of As(III) and As(V) complexation onto Al and Fe-hydroxides. In: O’Day P, Vlassopoulos D, Benning L (eds) Advances in arsenic research: Integration of experimental and observational studies and implications for mitigation, ACS Symposium Series 915. American Chemical Society, Washington

    Google Scholar 

  • Lenoble V, Deluchat V, Serpaud B, Bollinger J-C (2003) Arsenite oxidation and arsenate determination by the molybdene blue method. Talanta 61:267–276

    Article  Google Scholar 

  • Loring JS, Sandström MH, Norén K, Persson P (2009) Rethinking arsenate coordination at the surface of goethite. Chem Eur J 15:5063–5072

    Article  Google Scholar 

  • Luengo C, Puccia V, Avena M (2011) Arsenate adsorption and desorption kinetics on a Fe(III)-modified montmorillonite. J Hazard Mater 186:1713–1719

    Article  Google Scholar 

  • Martínez-Villegas N, Briones-Gallardo R, Ramos-Leal JA, Avalos-Borja M, Castañón-Sandoval AD, Razo-Flores E, Villalobos M (2013) Arsenic mobility controlled by solid calcium arsenates: a case study in Mexico showcasing a potentially widespread environmental problem. Environ Pollut 176:114–122

    Article  Google Scholar 

  • McLaren SJ, Kim ND (1995) Evidence for a seasonal fluctuation of arsenic in New Zealand’s longest river and the effect of treatment on concentrations in drinking water. Environ Pollut 90:67–73

    Article  Google Scholar 

  • Mubarak A, Olsen RA (1976) Immiscible displacement of the soil solution by centrifugation. Soil Sci Soc Am J 40:329–331

    Article  Google Scholar 

  • Muller K, Ciminelli VST, Dantas MSS, Willscher S (2010) A comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy. Water Res 44:5660–5672

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  Google Scholar 

  • Nickson RT, McArthur JM, Ravenscroft P, Burgess WG, Ahmed KM (2000) Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl Geochem 15:403–413

    Article  Google Scholar 

  • Nimick DA, Moore JN, Dalby CE, Savka MW (1998) The fate of geothermal arsenic in the Madison and Missouri Rivers, Montana and Wyoming. Water Resour Res 34:3051–3067

    Article  Google Scholar 

  • Postma D, Larsen F, Hue NTM, Duc MT, Viet PH, Nhan PQ, Jessen S (2007) Arsenic in groundwater of the Red River floodplain, Vietnam: controlling geochemical processes and reactive transport modelling. Geochim Cosmochim Acta 71:5054–5071

    Article  Google Scholar 

  • Robinson B, Outred H, Brooks R, Kirkman J (1995) The distribution and fate of arsenic in the Waikato River System, North Island, New Zealand. Chem Speciat Bioavail 7:89–96

    Google Scholar 

  • Schwertmann U, Cornell RM (2000) Iron oxides in the laboratory: preparation and characterization. Wiley, Weinheim

    Book  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour, and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  Google Scholar 

  • Smedley PL, Nicolli HB, Macdonald DMJ, Barros AJ, Tullio JO (2002) Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Appl Geochem 17:259–284

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG, Macdonald DMJ, Nicolli HB, Barros AJ, Tullio JO, Pearce JM, Alonso MS (2005) Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Appl Geochem 20:989–1016

    Article  Google Scholar 

  • Stachowicz M (2007) Solubility of arsenic in multi-component systems. From the microscopic to the macroscopic scale. Ph.D. Thesis. Wageningen University, Wageningen

  • Stachowicz M, Hiemstra T, Van Riemsdijk WH (2006) Surface speciation of As(III) and As(V) in relation to charge distribution. J Colloid Interface Sci 302:62–75

    Article  Google Scholar 

  • Stachowicz M, Hiemstra T, Van Riemsdijk WH (2007) Arsenic-bicarbonate interaction on goethite particles. Environ Sci Technol 41:5620–5625

    Article  Google Scholar 

  • Stachowicz M, Hiemstra T, Van Riemsdijk WH (2008) Multi-competitive interaction of As(III) and As(V) oxyanions with Ca2+, Mg2+, PO4 3−, and CO3 2− ions on goethite. J Colloid Interface Sci 320:400–414

    Article  Google Scholar 

  • Stollenwerk KG (2002) Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption. In: Welch AH, Stollenwerk AG (eds) Arsenic in ground water. Geochemistry and occurrence. Springer, New York, pp 67–100

    Google Scholar 

  • Stollenwerk KG, Breit GN, Welch AH, Yount JC, Whitney JW, Foster AL, Uddin MN, Majumder RK, Ahmed N (2007) Arsenic attenuation by oxidized aquifer sediments in Bangladesh. Sci Total Environ 379:133–150

    Article  Google Scholar 

  • Swartz CH, Blute NK, Badruzzman B, Ali A, Brabander D, Jay J, Besancon J, Islam S, Hemond HF, Harvey CF (2004) Mobility of arsenic in a Bangladesh aquifer: inferences from geochemical profiles, leaching data, and mineralogical characterization. Geochim Cosmochim Acta 68:4539–4557

    Article  Google Scholar 

  • Villalobos M, Leckie JO (2000) Carbonate adsorption onto goethite under closed and open CO2 conditions. Geochim Cosmochim Acta 64:3787–3802

    Article  Google Scholar 

  • Waychunas GA, Davis JA, Fuller CC (2005) Geometry of sorbed arsenate on ferrihydrite and crystalline FeOOH: re-evaluation of EXAFS results and topological factors in predicting sorbate geometry and evidence for monodentate complexes. Geochim Cosmochim Acta 59:3655–3661

    Article  Google Scholar 

  • Zeng H, Fisher B, Giammar D (2008) Individual and competitive adsorption of arsenate and phosphate to a high surface-area iron oxide-based sorbent. Environ Sci Technol 42:147–152

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by CONICET, SECyT-Argentina and SECyT-UNS. Olga Pieroni is thanked for her help with infrared measurement. MA and FL are members of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Avena.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 87 kb)

Appendix

Appendix

[Hexahidrita170910.MDI]

SCAN: 20.0/79.976/0.024/1(sec), Cu, I(max) = 41.0, 09/17/10 12:18p

PEAK: 27-pts/Parabolic filter, Threshold = 3.0, Cutoff = 0.1 %, BG = 3/1.0, Peak-top = Summit

Intensity = Counts, 2T(0) = 0.0(deg), Wavelength to computed-spacing = 1.54059A (Cu/K-alpha1)

#

2-Theta

d(Å)

Height

Height %

Phase ID

d(Å)

I %

(hkl)

2-Theta

Delta

Peak ID report

1

21.104

4.2063

34.5

85.9

      

2

25.737

3.4587

31.3

77.8

      

3

33.032

2.7096

39.3

97.8

      

4

33.776

2.6516

39.0

96.9

      

5

34.856

2.5719

40.2

100.0

      

6

35.912

2.4986

38.1

94.7

Fe5O7(OH)4H2…

2.5000

100.0

(110)

35.892

−0.020

7

36.752

2.4434

34.9

86.9

      

8

40.136

2.2449

21.8

54.2

      

9

40.474

2.2269

22.1

55.0

      

10

41.072

2.1958

22.3

55.5

Fe5O7(OH)4H2…

2.2100

80.0

(200)

40.797

−0.275

11

46.399

1.9554

19.6

48.7

Fe5O7(OH)4H2…

1.9600

80.0

(113)

46.284

−0.115

12

50.600

1.8025

17.0

42.3

      

13

51.776

1.7642

15.6

38.8

      

14

54.128

1.6930

18.2

45.2

      

15

55.353

1.6584

19.7

49.0

      

16

57.268

1.6074

20.0

49.8

      

17

59.048

1.5631

20.9

52.0

      

18

61.160

1.5141

22.8

56.6

Fe5O7(OH)4H2…

1.5100

70.0

(115)

61.345

0.185

19

61.832

1.4993

24.1

60.0

      

20

62.959

1.4751

25.9

64.5

Fe5O7(OH)4H2…

1.4800

80.0

(106)

62.728

−0.231

21

63.945

1.4547

23.7

58.9

      

22

65.168

1.4304

18.9

47.1

      

23

65.504

1.4238

16.3

40.6

      

24

67.088

1.3940

14.3

35.5

      

25

68.312

1.3720

12.0

29.9

      

26

69.200

1.3565

14.5

36.1

      

27

69.992

1.3431

11.5

28.5

      

28

71.576

1.3172

12.0

29.9

      

29

73.208

1.2918

11.0

27.4

      

30

73.734

1.2839

14.4

35.8

      

31

75.152

1.2632

10.6

26.3

      

32

76.544

1.2436

10.7

26.6

      
 

Line shifts of individual phases:

00-029-0712 > Ferrihydrite–Fe5O7(OH)4H2O < 2T(0) = 0.0, d/d(0) = 1.0>

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puccia, V., Limbozzi, F. & Avena, M. Arsenic in Porewaters of the Unsaturated Zone of an Argentinean Watershed: Adsorption and Competition with Carbonate as Important Processes that Regulate its Concentration. Aquat Geochem 21, 513–534 (2015). https://doi.org/10.1007/s10498-015-9271-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-015-9271-1

Keywords

Navigation