Skip to main content

Advertisement

Log in

Reduced risk of apoptosis: mechanisms of stress responses

  • The many ways of apoptotic cell death
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis signaling pathways are integrated into a wider network of interconnected apoptotic and anti-apoptotic pathways that regulate a broad range of cell responses from cell death to growth, development and stress responses. An important trigger for anti- or pro-apoptotic cell responses are different forms of stress including hypoxia, energy deprivation, DNA damage or inflammation. Stress duration and intensity determine whether the cell’s response will be improved cell survival, due to stress adaptation, or cell death by apoptosis, necrosis or autophagy. Although the interplay between enhanced stress tolerance and modulation of apoptosis triggering is not yet fully understood, there is a substantial body of experimental evidence demonstrating that apoptosis and anti-apoptosis signaling pathways can be manipulated to trigger or delay apoptosis in vitro or in vivo. Anti-apoptotic strategies cover a broad range of approaches. These interventions include mediators that prevent apoptosis (trophic factors and cytokines), apoptosis inhibition (caspase inhibition, stimulation of anti-apoptotic or inhibition of pro-apoptotic proteins and elimination of apoptotic stimulus), adaptive stress responses (induction of maintenance and repair, caspase inactivation) and cell–cell interactions (blocking engulfment and modified micro environment). There is a consensus that preclinical efficacy and safety evaluations of anti-apoptotic strategies should be performed with protocols that simulate as closely as possible the effects of aging, gender, risk factors, comorbidities and co-medications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AIF:

Apoptosis-inducing factor

AKT/PKB:

Protein kinase B

AMPK:

5′ AMP-activated protein kinase

APAF1:

Apoptotic protease activating factor 1

APO3L:

APO3 Ligand

ARTS:

Tumor necrosis factor receptor shedding aminopeptidase regulator

ASK1:

Apoptosis signal-regulating kinase 1

ASR:

Adaptive stress response

BAD:

BCL-2 antagonist of cell death

BAK:

BCL-2 antagonist killer

BAX:

BCL-2 associated X protein

BCL-2:

B-cell lymphoma 2

BCL-xL:

B-cell lymphoma, long isoform

BH:

BCL-2 homology domains

BH1-4:

Four BH domains

BID:

BH3-interacting domain death agonist

BIM:

BCL-2—protein 11

BRAF:

v-RAF murine sarcoma viral oncogene homolog B1

CD8+:

Antiviral T lymphocytes

c-FLIP:

Cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein

c-FLIPshort:

Cellular FLICE-Inhibitory protein-short

CMA:

Chaperone-mediated autophagy

CSA:

Cyclosporine A

DAG:

Diacylglycerol

dUTP:

2′-Deoxyuridine 5′-triphosphate

ER:

Endoplasmic reticulum

ERK1/2:

Extracellular response kinases 1/2

ERKs:

Extracellular signal regulated kinases

FAS:

Apoptosis antigen 1

FOXO:

Forkhead box O protein

GFs:

Growth factors

GLP1:

Glucagon-like peptide-1

GS:

Glycogen synthase

GSK3:

Glycogen synthase kinase 3

HIF:

Hypoxia inducing factor

HSF:

Heat shock factors

HSP90/70:

Heat shock proteins 90/70

HTRA2:

Serine protease HTRA2:mitochondrial

IAPs:

Inhibitors of apoptosis

IGF1:

Insulin-like growth factor 1

IKK:

IκB kinase

IP3R:

Inositol 1:4:5-triphosphate receptor

IRE1α:

Inositol-requiring enzyme1α

IRES:

Internal ribosome entry site

JAK:

Janus kinase

JNK:

c-jun N terminal kinases

JNK1:

c-Jun N-terminal kinase 1

MAPK:

p44/p42 mitogen activated protein kinases

MCL-1:

Myeloid cell leukemia 1

MDM2:

Anti-apoptotic mouse double minute 2

MEK:

Mitogen-activated protein kinase kinase

miRNA:

Micro ribonucleic acid

MITO MP:

Mitochondrial membrane permeability

MITO ROS:

Mitochondrial reactive oxygen species

MKK7:

MAP kinase kinase 7

mTORC1:

Mammalian target of rapamycin complex 1

mTORC2:

Mammalian target of rapamycin complex 2

NF-κB:

Nuclear factor kappa B

NOXA:

Adult T cell leukemia-derived PMA-responsive

Nrf2:

Nuclear factor-E2-related factor 2

p53:

Transformation-related protein 53

PDK-1:

3-Phosphoinositide-dependent protein kinase 1

PI3K:

Phosphatidylinositol-4:5-bisphosphate 3-kinase

PKA:

Protein kinase A

PKBK/USK:

PtdIns-3:4:5-P3 activated kinase

PKC:

Protein kinase C

PPC:

Calcium-activated protein phosphatase calcineurin

PUMA:

p53-Upregulated modulator of apoptosis

RAF:

Rapidly accelerated fibrosarcoma protein-serine/threonine kinase

ROS:

Reactive oxygen species

S6K:

Ribosomal protein S6 kinase beta 1

SAPK:

Stress-activated protein kinases

SIRT1:

Mammalian sirtuin 1

SMAC:

Second mitochondria-derived activator of caspases

SMS1:

Ceramide utilizing sphingomyelin synthase 1

-SNO:

Nitrosothiols

STAT 3,5:

Signal transducer and activator of transcription 3:5

tBID:

Truncated BID protein

TCR:

T cell receptor

TNFα:

Tumor necrosis factor alpha

TRAIL:

TNF-related apoptosis-inducing ligand

TSC2:

Tuberous sclerosis protein 2

UPP:

Ubiquitin–proteasome pathway

UPR:

Unfolded protein response

VEGF:

Vascular endothelial growth factor

XAF1:

XIAP-associated factor 1

XIAP:

X-linked inhibitor of apoptosis protein

References

  1. Milisav I, Poljsak B, Suput D (2012) Adaptive response, evidence of cross-resistance and its potential clinical use. Int J Mol Sci 13(9):10771–10806. doi:10.3390/ijms130910771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bánfalvi G (2014) Homeostasis—tumor—metastasis. Springer, Dordrecht; New York

    Book  Google Scholar 

  3. Akl H, Vervloessem T, Kiviluoto S, Bittremieux M, Parys JB, De Smedt H, Bultynck G (2014) A dual role for the anti-apoptotic Bcl-2 protein in cancer: mitochondria versus endoplasmic reticulum. Biochim Biophys Acta 1843(10):2240–2252. doi:10.1016/j.bbamcr.2014.04.017

    Article  CAS  PubMed  Google Scholar 

  4. Bonnefoy-Berard N, Aouacheria A, Verschelde C, Quemeneur L, Marcais A, Marvel J (2004) Control of proliferation by Bcl-2 family members. Biochim Biophys Acta 1644(2–3):159–168. doi:10.1016/j.bbamcr.2003.10.014

    Article  CAS  PubMed  Google Scholar 

  5. Winter JN, Andersen J, Reed JC, Krajewski S, Variakojis D, Bauer KD, Fisher RI, Gordon LI, Oken MM, Jiang S, Jeffries D, Domer P (1998) BCL-2 expression correlates with lower proliferative activity in the intermediate- and high-grade non-Hodgkin’s lymphomas: an Eastern Cooperative Oncology Group and Southwest Oncology Group cooperative laboratory study. Blood 91(4):1391–1398

    CAS  PubMed  Google Scholar 

  6. Roderick HL, Cook SJ (2008) Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 8(5):361–375. doi:10.1038/nrc2374

    Article  CAS  PubMed  Google Scholar 

  7. Tovar YRLB, Ramirez-Jarquin UN, Lazo-Gomez R, Tapia R (2014) Trophic factors as modulators of motor neuron physiology and survival: implications for ALS therapy. Front Cell Neurosci 8:61. doi:10.3389/fncel.2014.00061

    Google Scholar 

  8. Resnicoff M, Abraham D, Yutanawiboonchai W, Rotman HL, Kajstura J, Rubin R, Zoltick P, Baserga R (1995) The insulin-like growth-factor-I receptor protects tumor-cells from apoptosis in-vivo. Cancer Res 55(11):2463–2469

    CAS  PubMed  Google Scholar 

  9. Maiese K (2015) Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease. Neural Regen Res 10 (4):518–528. doi:10.4103/1673-5374.155427

    Article  PubMed  PubMed Central  Google Scholar 

  10. Aksu I, Ates M, Baykara B, Kiray M, Sisman AR, Buyuk E, Baykara B, Cetinkaya C, Gumus H, Uysal N (2012) Anxiety correlates to decreased blood and prefrontal cortex IGF-1 levels in streptozotocin induced diabetes. Neurosci Lett 531(2):176–181. doi:10.1016/j.neulet.2012.10.045

    Article  CAS  PubMed  Google Scholar 

  11. Busca A, Saxena M, Kryworuchko M, Kumar A (2009) Anti-apoptotic genes in the survival of monocytic cells during infection. Curr Genomics 10(5):306–317. doi:10.2174/138920209788920967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mangan DF, Welch GR, Wahl SM (1991) Lipopolysaccharide, tumor necrosis factor-alpha, and IL-1 beta prevent programmed cell death (apoptosis) in human peripheral blood monocytes. J Immunol 146(5):1541–1546

    CAS  PubMed  Google Scholar 

  13. Cathelin S, Rebe C, Haddaoui L, Simioni N, Verdier F, Fontenay M, Launay S, Mayeux P, Solary E (2006) Identification of proteins cleaved downstream of caspase activation in monocytes undergoing macrophage differentiation. J Biol Chem 281(26):17779–17788. doi:10.1074/jbc.M600537200

    Article  CAS  PubMed  Google Scholar 

  14. Sordet O, Rebe C, Plenchette S, Zermati Y, Hermine O, Vainchenker W, Garrido C, Solary E, Dubrez-Daloz L (2002) Specific involvement of caspases in the differentiation of monocytes into macrophages. Blood 100(13):4446–4453. doi:10.1182/blood-2002-06-1778

    Article  CAS  PubMed  Google Scholar 

  15. Chen L, Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13(4):227–242. doi:10.1038/nri3405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Dolfi DV, Katsikis PD (2007) CD28 and CD27 costimulation of CD8+ T cells: a story of survival. Adv Exp Med Biol 590:149–170. doi:10.1007/978-0-387-34814-8_11

    Article  PubMed  Google Scholar 

  17. Kirchhoff S, Muller WW, Li-Weber M, Krammer PH (2000) Up-regulation of c-FLIPshort and reduction of activation-induced cell death in CD28-costimulated human T cells. Eur J Immunol 30 (10):2765–2774. doi:10.1002/1521-4141(200010)30:10<2765::AID-IMMU2765>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  18. Fulda S (2010) Evasion of apoptosis as a cellular stress response in cancer. Int J Cell Biol 2010:370835. doi:10.1155/2010/370835

    PubMed  PubMed Central  Google Scholar 

  19. Lewis SM, Holcik M (2005) IRES in distress: translational regulation of the inhibitor of apoptosis proteins XIAP and HIAP2 during cell stress. Cell Death Differ 12(6):547–553. doi:10.1038/sj.cdd.4401602

    Article  CAS  PubMed  Google Scholar 

  20. Yaacoub K, Pedeux R, Tarte K, Guillaudeux T (2016) Role of the tumor microenvironment in regulating apoptosis and cancer progression. Cancer Lett 378(2):150–159. doi:10.1016/j.canlet.2016.05.012

    Article  CAS  PubMed  Google Scholar 

  21. Riley JS, Hutchinson R, McArt DG, Crawford N, Holohan C, Paul I, Van Schaeybroeck S, Salto-Tellez M, Johnston PG, Fennell DA, Gately K, O’Byrne K, Cummins R, Kay E, Hamilton P, Stasik I, Longley DB (2013) Prognostic and therapeutic relevance of FLIP and procaspase-8 overexpression in non-small cell lung cancer. Cell Death Dis 4:e951. doi:10.1038/cddis.2013.481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ozturk S, Schleich K, Lavrik IN (2012) Cellular FLICE-like inhibitory proteins (c-FLIPs): fine-tuners of life and death decisions. Exp Cell Res 318(11):1324–1331. doi:10.1016/j.yexcr.2012.01.019

    Article  CAS  PubMed  Google Scholar 

  23. Mannick JB, Schonhoff C, Papeta N, Ghafourifar P, Szibor M, Fang K, Gaston B (2001) S-Nitrosylation of mitochondrial caspases. J Cell Biol 154(6):1111–1116. doi:10.1083/jcb.200104008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mannick JB, Hausladen A, Liu L, Hess DT, Zeng M, Miao QX, Kane LS, Gow AJ, Stamler JS (1999) Fas-induced caspase denitrosylation. Science 284(5414):651–654

    Article  CAS  PubMed  Google Scholar 

  25. Dimmeler S, Haendeler J, Nehls M, Zeiher AM (1997) Suppression of apoptosis by nitric oxide via inhibition of interleukin-1beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J Exp Med 185(4):601–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim YM, Kim JH, Kwon HM, Lee DH, Won MH, Kwon YG, Kim YM (2013) Korean Red Ginseng protects endothelial cells from serum-deprived apoptosis by regulating Bcl-2 family protein dynamics and caspase S-nitrosylation. J Ginseng Res 37(4):413–424. doi:10.5142/jgr.2013.37.413

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sengupta R, Holmgren A (2013) Thioredoxin and thioredoxin reductase in relation to reversible S-nitrosylation. Antioxid Redox Signal 18(3):259–269. doi:10.1089/ars.2012.4716

    Article  CAS  PubMed  Google Scholar 

  28. Nakamura T, Wang L, Wong CC, Scott FL, Eckelman BP, Han X, Tzitzilonis C, Meng F, Gu Z, Holland EA, Clemente AT, Okamoto S, Salvesen GS, Riek R, Yates JR 3rd, Lipton SA (2010) Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death. Mol Cell 39(2):184–195. doi:10.1016/j.molcel.2010.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Luna-Vargas MP, Chipuk JE (2016) Physiological and pharmacological control of BAK, BAX, and beyond. Trends Cell Biol. doi:10.1016/j.tcb.2016.07.002

    PubMed  Google Scholar 

  30. Franke TF, Cantley LC (1997) Apoptosis. A Bad kinase makes good. Nature 390(6656):116–117. doi:10.1038/36442

    Article  CAS  PubMed  Google Scholar 

  31. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87(4):619–628

    Article  CAS  PubMed  Google Scholar 

  32. Scheid MP, Duronio V (1998) Dissociation of cytokine-induced phosphorylation of Bad and activation of PKB/akt: involvement of MEK upstream of Bad phosphorylation. Proc Natl Acad Sci U S A 95(13):7439–7444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Harada H, Becknell B, Wilm M, Mann M, Huang LJ, Taylor SS, Scott JD, Korsmeyer SJ (1999) Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol Cell 3(4):413–422

    Article  CAS  PubMed  Google Scholar 

  34. Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, McKeon F, Bobo T, Franke TF, Reed JC (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284(5412):339–343

    Article  CAS  PubMed  Google Scholar 

  35. Karch J, Kwong JQ, Burr AR, Sargent MA, Elrod JW, Peixoto PM, Martinez-Caballero S, Osinska H, Cheng EH, Robbins J, Kinnally KW, Molkentin JD (2013) Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice. Elife 2:e00772. doi:10.7554/eLife.00772

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yip KW, Reed JC (2008) Bcl-2 family proteins and cancer. Oncogene 27(50):6398–6406. doi:10.1038/onc.2008.307

    Article  CAS  PubMed  Google Scholar 

  37. Zhao Y, Altman BJ, Coloff JL, Herman CE, Jacobs SR, Wieman HL, Wofford JA, Dimascio LN, Ilkayeva O, Kelekar A, Reya T, Rathmell JC (2007) Glycogen synthase kinase 3alpha and 3beta mediate a glucose-sensitive antiapoptotic signaling pathway to stabilize Mcl-1. Mol Cell Biol 27(12):4328–4339. doi:10.1128/MCB.00153-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC, Perucho M (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275(5302):967–969

    Article  CAS  PubMed  Google Scholar 

  39. Meijerink JP, Mensink EJ, Wang K, Sedlak TW, Sloetjes AW, de Witte T, Waksman G, Korsmeyer SJ (1998) Hematopoietic malignancies demonstrate loss-of-function mutations of BAX. Blood 91(8):2991–2997

    CAS  PubMed  Google Scholar 

  40. Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80(2):293–299

    Article  CAS  PubMed  Google Scholar 

  41. Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS (2002) BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol 4(11):842–849. doi:10.1038/ncb866

    Article  CAS  PubMed  Google Scholar 

  42. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288(5468):1053–1058

    Article  CAS  PubMed  Google Scholar 

  43. Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L (2003) PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci USA 100(4):1931–1936. doi:10.1073/pnas.2627984100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu X, He S (2016) The interplay between human herpes simplex virus infection and the apoptosis and necroptosis cell death pathways. Virol J 13:77. doi:10.1186/s12985-016-0528-0

    Article  PubMed  PubMed Central  Google Scholar 

  45. Speidel D (2010) Transcription-independent p53 apoptosis: an alternative route to death. Trends Cell Biol 20(1):14–24. doi:10.1016/j.tcb.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  46. Milisav I (2011) Cellular stress responses. In: Gendebien DSW (ed) Advances in regenerative medicine. InTech. doi:10.5772/26118

  47. Ak P, Levine AJ (2010) p53 and NF-kappaB: different strategies for responding to stress lead to a functional antagonism. FASEB J 24(10):3643–3652. doi:10.1096/fj.10-160549

    Article  CAS  PubMed  Google Scholar 

  48. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. doi:10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Feng Z (2010) p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harb Perspect Biol 2(2):a001057. doi:10.1101/cshperspect.a001057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Toker A, Newton AC (2000) Cellular signaling: pivoting around PDK-1. Cell 103(2):185–188

    Article  CAS  PubMed  Google Scholar 

  51. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2):231–241

    Article  CAS  PubMed  Google Scholar 

  52. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868

    Article  CAS  PubMed  Google Scholar 

  53. Castedo M, Ferri KF, Kroemer G (2002) Mammalian target of rapamycin (mTOR): pro- and anti-apoptotic. Cell Death Differ 9(2):99–100. doi:10.1038/sj.cdd.4400978

    Article  CAS  PubMed  Google Scholar 

  54. Raught B, Gingras AC, Sonenberg N (2001) The target of rapamycin (TOR) proteins. Proc Natl Acad Sci USA 98(13):7037–7044. doi:10.1073/pnas.121145898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Iiboshi Y, Papst PJ, Kawasome H, Hosoi H, Abraham RT, Houghton PJ, Terada N (1999) Amino acid-dependent control of p70(s6k). Involvement of tRNA aminoacylation in the regulation. J Biol Chem 274(2):1092–1099

    Article  CAS  PubMed  Google Scholar 

  56. Kumar V, Sabatini D, Pandey P, Gingras AC, Majumder PK, Kumar M, Yuan ZM, Carmichael G, Weichselbaum R, Sonenberg N, Kufe D, Kharbanda S (2000) Regulation of the rapamycin and FKBP-target 1/mammalian target of rapamycin and cap-dependent initiation of translation by the c-Abl protein-tyrosine kinase. J Biol Chem 275(15):10779–10787

    Article  CAS  PubMed  Google Scholar 

  57. Kim J, Parrish AB, Kurokawa M, Matsuura K, Freel CD, Andersen JL, Johnson CE, Kornbluth S (2012) Rsk-mediated phosphorylation and 14-3-3varepsilon binding of Apaf-1 suppresses cytochrome c-induced apoptosis. EMBO J 31(5):1279–1292. doi:10.1038/emboj.2011.491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Korolchuk VI, Saiki S, Lichtenberg M, Siddiqi FH, Roberts EA, Imarisio S, Jahreiss L, Sarkar S, Futter M, Menzies FM, O’Kane CJ, Deretic V, Rubinsztein DC (2011) Lysosomal positioning coordinates cellular nutrient responses. Nat Cell Biol 13(4):453–460. doi:10.1038/ncb2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McCormick MA, Tsai SY, Kennedy BK (2011) TOR and ageing: a complex pathway for a complex process. Philos Trans R Soc Lond B Biol Sci 366(1561):17–27. doi:10.1098/rstb.2010.0198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10(5):307–318. doi:10.1038/nrm2672

    Article  PubMed  CAS  Google Scholar 

  61. Laplante M, Sabatini DM (2009) An emerging role of mTOR in lipid biosynthesis. Curr Biol 19(22):R1046–R1052. doi:10.1016/j.cub.2009.09.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293. doi:10.1016/j.cell.2012.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Laplante M, Sabatini DM (2012) mTOR Signaling. Cold Spring Harb Perspect Biol 4(2). doi:10.1101/cshperspect.a011593

  64. Levine AJ, Feng Z, Mak TW, You H, Jin S (2006) Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes Dev 20(3):267–275. doi:10.1101/gad.1363206

    Article  CAS  PubMed  Google Scholar 

  65. Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, Benchimol S, Mak TW (2001) Regulation of PTEN transcription by p53. Mol Cell 8(2):317–325

    Article  CAS  PubMed  Google Scholar 

  66. Feng Z, Zhang H, Levine AJ, Jin S (2005) The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci U S A 102(23):8204–8209. doi:10.1073/pnas.0502857102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8(1):49–62. doi:10.1038/nrm2083

    Article  CAS  PubMed  Google Scholar 

  68. Webster GA, Perkins ND (1999) Transcriptional cross talk between NF-kappaB and p53. Mol Cell Biol 19(5):3485–3495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tanaka T, Tsuchiya R, Hozumi Y, Nakano T, Okada M, Goto K (2016) Reciprocal regulation of p53 and NF-kappaB by diacylglycerol kinase zeta. Adv Biol Regul 60:15–21. doi:10.1016/j.jbior.2015.09.009

    Article  CAS  PubMed  Google Scholar 

  70. Verdin E, Hirschey MD, Finley LW, Haigis MC (2010) Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci 35(12):669–675. doi:10.1016/j.tibs.2010.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305(5682):390–392. doi:10.1126/science.1099196

    Article  CAS  PubMed  Google Scholar 

  72. Wakeling LA, Ions LJ, Ford D (2009) Could Sirt1-mediated epigenetic effects contribute to the longevity response to dietary restriction and be mimicked by other dietary interventions? Age (Dordr) 31 (4):327–341. doi:10.1007/s11357-009-9104-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107(2):137–148

    Article  CAS  PubMed  Google Scholar 

  74. Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116(4):551–563

    Article  CAS  PubMed  Google Scholar 

  75. Schilling MM, Oeser JK, Boustead JN, Flemming BP, O’Brien RM (2006) Gluconeogenesis: re-evaluating the FOXO1-PGC-1alpha connection. Nature 443(7111):E10–E11. doi:10.1038/nature05288

    Article  CAS  PubMed  Google Scholar 

  76. Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18(4):357–368. doi:10.1101/gad.1177604

    Article  CAS  PubMed  Google Scholar 

  77. Ditch S, Paull TT (2012) The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. Trends Biochem Sci 37(1):15–22. doi:10.1016/j.tibs.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  78. Barzilai A, Rotman G, Shiloh Y (2002) ATM deficiency and oxidative stress: a new dimension of defective response to DNA damage. DNA Repair (Amst) 1(1):3–25

    Article  CAS  Google Scholar 

  79. Shackelford RE, Innes CL, Sieber SO, Heinloth AN, Leadon SA, Paules RS (2001) The Ataxia telangiectasia gene product is required for oxidative stress-induced G1 and G2 checkpoint function in human fibroblasts. J Biol Chem 276(24):21951–21959. doi:10.1074/jbc.M011303200

    Article  CAS  PubMed  Google Scholar 

  80. Guo Z, Kozlov S, Lavin MF, Person MD, Paull TT (2010) ATM activation by oxidative stress. Science 330(6003):517–521. doi:10.1126/science.1192912

    Article  CAS  PubMed  Google Scholar 

  81. Shaw RJ (2009) LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol (Oxf) 196(1):65–80. doi:10.1111/j.1748-1716.2009.01972.x

    Article  CAS  Google Scholar 

  82. Shahrabani-Gargir L, Pandita TK, Werner H (2004) Ataxia-telangiectasia mutated gene controls insulin-like growth factor I receptor gene expression in a deoxyribonucleic acid damage response pathway via mechanisms involving zinc-finger transcription factors Sp1 and WT1. Endocrinology 145(12):5679–5687. doi:10.1210/en.2004-0613

    Article  CAS  PubMed  Google Scholar 

  83. Armata HL, Golebiowski D, Jung DY, Ko HJ, Kim JK, Sluss HK (2010) Requirement of the ATM/p53 tumor suppressor pathway for glucose homeostasis. Mol Cell Biol 30(24):5787–5794. doi:10.1128/MCB.00347-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Alexander A, Cai SL, Kim J, Nanez A, Sahin M, MacLean KH, Inoki K, Guan KL, Shen J, Person MD, Kusewitt D, Mills GB, Kastan MB, Walker CL (2010) ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci USA 107(9):4153–4158. doi:10.1073/pnas.0913860107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cam H, Easton JB, High A, Houghton PJ (2010) mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1alpha. Mol Cell 40(4):509–520. doi:10.1016/j.molcel.2010.10.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. O’Gorman DM, Cotter TG (2001) Molecular signals in anti-apoptotic survival pathways. Leukemia 15(1):21–34

    Article  PubMed  Google Scholar 

  87. Jarpe MB, Widmann C, Knall C, Schlesinger TK, Gibson S, Yujiri T, Fanger GR, Gelfand EW, Johnson GL (1998) Anti-apoptotic versus pro-apoptotic signal transduction: checkpoints and stop signs along the road to death. Oncogene 17(11 Reviews):1475–1482. doi:10.1038/sj.onc.1202183

    Article  CAS  PubMed  Google Scholar 

  88. Gardner AM, Johnson GL (1996) Fibroblast growth factor-2 suppression of tumor necrosis factor alpha-mediated apoptosis requires Ras and the activation of mitogen-activated protein kinase. J Biol Chem 271(24):14560–14566

    Article  CAS  PubMed  Google Scholar 

  89. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270(5240):1326–1331

    Article  CAS  PubMed  Google Scholar 

  90. Frasch SC, Nick JA, Fadok VA, Bratton DL, Worthen GS, Henson PM (1998) p38 mitogen-activated protein kinase-dependent and -independent intracellular signal transduction pathways leading to apoptosis in human neutrophils. J Biol Chem 273(14):8389–8397

    Article  CAS  PubMed  Google Scholar 

  91. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275(5300):661–665

    Article  CAS  PubMed  Google Scholar 

  92. Yao R, Cooper GM (1995) Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267(5206):2003–2006

    Article  CAS  PubMed  Google Scholar 

  93. Kennedy SG, Wagner AJ, Conzen SD, Jordan J, Bellacosa A, Tsichlis PN, Hay N (1997) The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev 11(6):701–713

    Article  CAS  PubMed  Google Scholar 

  94. Kulik G, Klippel A, Weber MJ (1997) Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol 17(3):1595–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kodaki T, Woscholski R, Hallberg B, Rodriguez-Viciana P, Downward J, Parker PJ (1994) The activation of phosphatidylinositol 3-kinase by Ras. Curr Biol 4(9):798–806

    Article  CAS  PubMed  Google Scholar 

  96. Downward J (1998) Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 10(2):262–267

    Article  CAS  PubMed  Google Scholar 

  97. Will M, Qin AC, Toy W, Yao Z, Rodrik-Outmezguine V, Schneider C, Huang X, Monian P, Jiang X, de Stanchina E, Baselga J, Liu N, Chandarlapaty S, Rosen N (2014) Rapid induction of apoptosis by PI3K inhibitors is dependent upon their transient inhibition of RAS-ERK signaling. Cancer Discov 4(3):334–347. doi:10.1158/2159-8290.CD-13-0611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rana C, Piplani H, Vaish V, Nehru B, Sanyal SN (2015) Downregulation of PI3-K/Akt/PTEN pathway and activation of mitochondrial intrinsic apoptosis by Diclofenac and Curcumin in colon cancer. Mol Cell Biochem 402(1–2):225–241. doi:10.1007/s11010-015-2330-5

    Article  CAS  PubMed  Google Scholar 

  99. Zhuang Z, Zhao X, Wu Y, Huang R, Zhu L, Zhang Y, Shi J (2011) The anti-apoptotic effect of PI3K-Akt signaling pathway after subarachnoid hemorrhage in rats. Ann Clin Lab Sci 41(4):364–372

    CAS  PubMed  Google Scholar 

  100. Konishi H, Matsuzaki H, Tanaka M, Ono Y, Tokunaga C, Kuroda S, Kikkawa U (1996) Activation of RAC-protein kinase by heat shock and hyperosmolarity stress through a pathway independent of phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 93(15):7639–7643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7(4):261–269

    Article  CAS  PubMed  Google Scholar 

  102. Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF, Holmes AB, McCormick F, Hawkins PT (1997) Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 277(5325):567–570

    Article  CAS  PubMed  Google Scholar 

  103. Franke TF, Kaplan DR, Cantley LC, Toker A (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275(5300):665–668

    Article  CAS  PubMed  Google Scholar 

  104. Franke TF, Kaplan DR, Cantley LC (1997) PI3K: downstream AKTion blocks apoptosis. Cell 88(4):435–437

    Article  CAS  PubMed  Google Scholar 

  105. Szanto A, Bognar Z, Szigeti A, Szabo A, Farkas L, Gallyas F Jr (2009) Critical role of bad phosphorylation by Akt in cytostatic resistance of human bladder cancer cells. Anticancer Res 29(1):159–164

    CAS  PubMed  Google Scholar 

  106. Seow HF, Yip WK, Loh HW, Ithnin H, Por P, Rohaizak M (2010) Immunohistochemical detection of phospho-Akt, phospho-BAD, HER2 and oestrogen receptors alpha and beta in Malaysian breast cancer patients. Pathol Oncol Res 16(2):239–248. doi:10.1007/s12253-009-9216-3

    Article  CAS  PubMed  Google Scholar 

  107. Romashkova JA, Makarov SS (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401(6748):86–90. doi:10.1038/43474

    Article  CAS  PubMed  Google Scholar 

  108. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401(6748):82–85. doi:10.1038/43466

    Article  CAS  PubMed  Google Scholar 

  109. Zhang X, Tang N, Hadden TJ, Rishi AK (2011) Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta 1813(11):1978–1986. doi:10.1016/j.bbamcr.2011.03.010

    Article  CAS  PubMed  Google Scholar 

  110. Chen N, Yin S, Song X, Fan L, Hu H (2015) Vitamin B(2) Sensitizes Cancer Cells to vitamin-C-induced cell death via modulation of Akt and bad phosphorylation. J Agric Food Chem 63(30):6739–6748. doi:10.1021/acs.jafc.5b01909

    Article  CAS  PubMed  Google Scholar 

  111. Pandey MK, DeGrado TR (2016) Glycogen synthase kinase-3 (GSK-3)-targeted therapy and imaging. Theranostics 6 (4):571–593. doi:10.7150/thno.14334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Beurel E, Grieco SF, Jope RS (2015) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 148:114–131. doi:10.1016/j.pharmthera.2014.11.016

    Article  CAS  PubMed  Google Scholar 

  113. Ruvolo PP, Qiu Y, Coombes KR, Zhang N, Neeley ES, Ruvolo VR, Hail N, Jr., Borthakur G, Konopleva M, Andreeff M, Kornblau SM (2015) Phosphorylation of GSK3alpha/beta correlates with activation of AKT and is prognostic for poor overall survival in acute myeloid leukemia patients. BBA Clin 4:59–68. doi:10.1016/j.bbacli.2015.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  114. Plyte SE, Hughes K, Nikolakaki E, Pulverer BJ, Woodgett JR (1992) Glycogen synthase kinase-3: functions in oncogenesis and development. Biochim Biophys Acta 1114(2–3):147–162

    CAS  PubMed  Google Scholar 

  115. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378(6559):785–789. doi:10.1038/378785a0

    Article  CAS  PubMed  Google Scholar 

  116. Fiol CJ, Williams JS, Chou CH, Wang QM, Roach PJ, Andrisani OM (1994) A secondary phosphorylation of CREB341 at Ser129 is required for the cAMP-mediated control of gene expression. A role for glycogen synthase kinase-3 in the control of gene expression. J Biol Chem 269(51):32187–32193

    CAS  PubMed  Google Scholar 

  117. Welsh GI, Proud CG (1993) Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B. Biochem J 294(Pt 3):625–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Liu X, Yao Z (2016) Chronic over-nutrition and dysregulation of GSK3 in diseases. Nutr Metab (Lond) 13:49. doi:10.1186/s12986-016-0108-8

    Article  Google Scholar 

  119. Yin H, Chao L, Chao J (2004) Adrenomedullin protects against myocardial apoptosis after ischemia/reperfusion through activation of Akt-GSK signaling. Hypertension 43(1):109–116. doi:10.1161/01.HYP.0000103696.60047.55

    Article  CAS  PubMed  Google Scholar 

  120. McCormick F (1993) Signal transduction. How receptors turn Ras on. Nature 363(6424):15–16. doi:10.1038/363015a0

    Article  CAS  PubMed  Google Scholar 

  121. Castellano E, Downward J (2011) RAS Interaction with PI3K: More Than Just Another Effector Pathway. Genes Cancer 2(3):261–274. doi:10.1177/1947601911408079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bos JL (1989) ras oncogenes in human cancer: a review. Cancer Res 49(17):4682–4689

    CAS  PubMed  Google Scholar 

  123. Avruch J, Zhang XF, Kyriakis JM (1994) Raf meets Ras: completing the framework of a signal transduction pathway. Trends Biochem Sci 19(7):279–283

    Article  CAS  PubMed  Google Scholar 

  124. Price CM, Marshall CJ, Bashey A (1994) Sequential acquisition of trisomy 8 and N-ras mutation in acute myeloid leukaemia demonstrated by analysis of isolated leukaemic colonies. Br J Haematol 88(2):338–342

    Article  CAS  PubMed  Google Scholar 

  125. Kinoshita T, Yokota T, Arai K, Miyajima A (1995) Regulation of Bcl-2 expression by oncogenic Ras protein in hematopoietic cells. Oncogene 10(11):2207–2212

    CAS  PubMed  Google Scholar 

  126. Matallanas D, Romano D, Al-Mulla F, O’Neill E, Al-Ali W, Crespo P, Doyle B, Nixon C, Sansom O, Drosten M, Barbacid M, Kolch W (2011) Mutant K-Ras activation of the proapoptotic MST2 pathway is antagonized by wild-type K-Ras. Mol Cell 44(6):893–906. doi:10.1016/j.molcel.2011.10.016

    Article  CAS  PubMed  Google Scholar 

  127. Khwaja A, Rodriguez-Viciana P, Wennstrom S, Warne PH, Downward J (1997) Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J 16(10):2783–2793. doi:10.1093/emboj/16.10.2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Berger A, Quast SA, Plotz M, Kuhn NF, Trefzer U, Eberle J (2014) RAF inhibition overcomes resistance to TRAIL-induced apoptosis in melanoma cells. J Invest Dermatol 134(2):430–440. doi:10.1038/jid.2013.347

    Article  CAS  PubMed  Google Scholar 

  129. Alejandro EU, Johnson JD (2008) Inhibition of Raf-1 alters multiple downstream pathways to induce pancreatic beta-cell apoptosis. J Biol Chem 283(4):2407–2417. doi:10.1074/jbc.M703612200

    Article  CAS  PubMed  Google Scholar 

  130. Kanashiro CA, Khalil RA (1998) Signal transduction by protein kinase C in mammalian cells. Clin Exp Pharmacol Physiol 25(12):974–985

    Article  CAS  PubMed  Google Scholar 

  131. Toker A (1998) Signaling through protein kinase C. Front Biosci 3:D1134–D1147

    Article  CAS  PubMed  Google Scholar 

  132. Blobe GC, Stribling S, Obeid LM, Hannun YA (1996) Protein kinase C isoenzymes: regulation and function. Cancer Surv 27:213–248

    CAS  PubMed  Google Scholar 

  133. Chou MM, Hou W, Johnson J, Graham LK, Lee MH, Chen CS, Newton AC, Schaffhausen BS, Toker A (1998) Regulation of protein kinase C zeta by PI 3-kinase and PDK-1. Curr Biol 8(19):1069–1077

    Article  CAS  PubMed  Google Scholar 

  134. Chen CY, Faller DV (1995) Direction of p21ras-generated signals towards cell growth or apoptosis is determined by protein kinase C and Bcl-2. Oncogene 11(8):1487–1498

    CAS  PubMed  Google Scholar 

  135. Ito T, Deng X, Carr B, May WS (1997) Bcl-2 phosphorylation required for anti-apoptosis function. J Biol Chem 272(18):11671–11673

    Article  CAS  PubMed  Google Scholar 

  136. Gubina E, Rinaudo MS, Szallasi Z, Blumberg PM, Mufson RA (1998) Overexpression of protein kinase C isoform epsilon but not delta in human interleukin-3-dependent cells suppresses apoptosis and induces bcl-2 expression. Blood 91(3):823–829

    CAS  PubMed  Google Scholar 

  137. Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon C, Archimbaud E, Magaud JP, Guyotat D (1993) High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 81(11):3091–3096

    CAS  PubMed  Google Scholar 

  138. Bluwstein A, Kumar N, Leger K, Traenkle J, Oostrum J, Rehrauer H, Baudis M, Hottiger MO (2013) PKC signaling prevents irradiation-induced apoptosis of primary human fibroblasts. Cell Death Dis 4:e498. doi:10.1038/cddis.2013.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hou Q, Lin J, Huang W, Li M, Feng J, Mao X (2015) CTRP3 stimulates proliferation and anti-apoptosis of prostate cells through PKC signaling pathways. PLoS One 10(7):e0134006. doi:10.1371/journal.pone.0134006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Hong SH, Ren L, Mendoza A, Eleswarapu A, Khanna C (2012) Apoptosis resistance and PKC signaling: distinguishing features of high and low metastatic cells. Neoplasia 14(3):249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yanase N, Hayashida M, Kanetaka-Naka Y, Hoshika A, Mizuguchi J (2012) PKC-delta mediates interferon-alpha-induced apoptosis through c-Jun NH(2)-terminal kinase activation. BMC Cell Biol 13:7. doi:10.1186/1471-2121-13-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Li Z, Wang N, Fang J, Huang J, Tian F, Li C, Xie F (2012) Role of PKC-ERK signaling in tamoxifen-induced apoptosis and tamoxifen resistance in human breast cancer cells. Oncol Rep 27(6):1879–1886. doi:10.3892/or.2012.1728

    CAS  PubMed  Google Scholar 

  143. Tibbles LA, Woodgett JR (1999) The stress-activated protein kinase pathways. Cell Mol Life Sci 55(10):1230–1254. doi:10.1007/s000180050369

    Article  CAS  PubMed  Google Scholar 

  144. Gille H, Kortenjann M, Thomae O, Moomaw C, Slaughter C, Cobb MH, Shaw PE (1995) ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J 14(5):951–962

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Johnson R, Spiegelman B, Hanahan D, Wisdom R (1996) Cellular transformation and malignancy induced by ras require c-jun. Mol Cell Biol 16(8):4504–4511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Raitano AB, Halpern JR, Hambuch TM, Sawyers CL (1995) The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc Natl Acad Sci USA 92(25):11746–11750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang H, Li F, Pan Z, Wu Z, Wang Y, Cui Y (2014) Activation of PI3K/Akt pathway limits JNK-mediated apoptosis during EV71 infection. Virus Res 192:74–84. doi:10.1016/j.virusres.2014.07.026

    Article  CAS  PubMed  Google Scholar 

  148. Chien CC, Wu MS, Shen SC, Ko CH, Chen CH, Yang LL, Chen YC (2014) Activation of JNK contributes to evodiamine-induced apoptosis and G2/M arrest in human colorectal carcinoma cells: a structure–activity study of evodiamine. PLoS One 9(6):e99729. doi:10.1371/journal.pone.0099729

    Article  PubMed  PubMed Central  Google Scholar 

  149. Ryoo HD, Bergmann A (2012) The role of apoptosis-induced proliferation for regeneration and cancer. Cold Spring Harb Perspect Biol 4(8):a008797. doi:10.1101/cshperspect.a008797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Hwang IH, Park J, Kim JM, Kim SI, Choi JS, Lee KB, Yun SH, Lee MG, Park SJ, Jang IS (2016) Tetraspanin-2 promotes glucotoxic apoptosis by regulating the JNK/beta-catenin signaling pathway in human pancreatic beta cells. FASEB J 30(9):3107–3116. doi:10.1096/fj.201600240RR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang Y, Xu Z, Wang J, Xu S (2016) DUSP19, a downstream effector of leptin, inhibits chondrocyte apoptosis via dephosphorylating JNK during osteoarthritis pathogenesis. Mol Biosyst 12(3):721–728. doi:10.1039/c5mb00776c

    Article  CAS  PubMed  Google Scholar 

  152. Vin H, Ojeda SS, Ching G, Leung ML, Chitsazzadeh V, Dwyer DW, Adelmann CH, Restrepo M, Richards KN, Stewart LR, Du L, Ferguson SB, Chakravarti D, Ehrenreiter K, Baccarini M, Ruggieri R, Curry JL, Kim KB, Ciurea AM, Duvic M, Prieto VG, Ullrich SE, Dalby KN, Flores ER, Tsai KY (2013) BRAF inhibitors suppress apoptosis through off-target inhibition of JNK signaling. Elife 2:e00969. doi:10.7554/eLife.00969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Hoeppner DJ, Hengartner MO, Schnabel R (2001) Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature 412(6843):202–206. doi:10.1038/35084103

    Article  CAS  PubMed  Google Scholar 

  154. Reddien PW, Cameron S, Horvitz HR (2001) Phagocytosis promotes programmed cell death in C. elegans. Nature 412(6843):198–202. doi:10.1038/35084096

    Article  CAS  PubMed  Google Scholar 

  155. Szondy Z, Garabuczi E, Joos G, Tsay GJ, Sarang Z (2014) Impaired clearance of apoptotic cells in chronic inflammatory diseases: therapeutic implications. Front Immunol 5:354. doi:10.3389/fimmu.2014.00354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Castells M, Thibault B, Delord JP, Couderc B (2012) Implication of tumor microenvironment in chemoresistance: tumor-associated stromal cells protect tumor cells from cell death. Int J Mol Sci 13(8):9545–9571. doi:10.3390/ijms13089545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Benito J, Shi Y, Szymanska B, Carol H, Boehm I, Lu H, Konoplev S, Fang W, Zweidler-McKay PA, Campana D, Borthakur G, Bueso-Ramos C, Shpall E, Thomas DA, Jordan CT, Kantarjian H, Wilson WR, Lock R, Andreeff M, Konopleva M (2011) Pronounced hypoxia in models of murine and human leukemia: high efficacy of hypoxia-activated prodrug PR-104. PLoS One 6(8):e23108. doi:10.1371/journal.pone.0023108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shain KH, Landowski TH, Dalton WS (2000) The tumor microenvironment as a determinant of cancer cell survival: a possible mechanism for de novo drug resistance. Curr Opin Oncol 12(6):557–563

    Article  CAS  PubMed  Google Scholar 

  159. Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT (2011) Anti-apoptosis and cell survival: a review. Biochim Biophys Acta 1813(1):238–259. doi:10.1016/j.bbamcr.2010.10.010

    Article  CAS  PubMed  Google Scholar 

  160. Fulda S, Gorman AM, Hori O, Samali A (2010) Cellular stress responses: cell survival and cell death. Int. J Cell Biol 2010:214074. doi:10.1155/2010/214074

    Google Scholar 

  161. Stancevic B, Kolesnick R (2010) Ceramide-rich platforms in transmembrane signaling. FEBS Lett 584(9):1728–1740. doi:10.1016/j.febslet.2010.02.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Sivaraman V, Yellon DM (2014) Pharmacologic therapy that simulates conditioning for cardiac ischemic/reperfusion injury. J Cardiovasc Pharmacol Ther 19(1):83–96. doi:10.1177/1074248413499973

    Article  CAS  PubMed  Google Scholar 

  163. Iliodromitis EK, Cohen MV, Dagres N, Andreadou I, Kremastinos DT, Downey JM (2015) What is wrong with cardiac conditioning? We may be shooting at moving targets. J Cardiovasc Pharmacol Ther 20(4):357–369. doi:10.1177/1074248414566459

    Article  PubMed  Google Scholar 

  164. Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R (2014) Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 66(4):1142–1174. doi:10.1124/pr.113.008300

    Article  CAS  PubMed  Google Scholar 

  165. Nipic D, Pirc A, Banic B, Suput D, Milisav I (2010) Preapoptotic cell stress response of primary hepatocytes. Hepatology 51(6):2140–2151. doi:10.1002/hep.23598

    Article  CAS  PubMed  Google Scholar 

  166. Banic B, Nipic D, Suput D, Milisav I (2011) DMSO modulates the pathway of apoptosis triggering. Cell Mol Biol Lett 16(2):328–341. doi:10.2478/s11658-011-0007-y

    Article  CAS  PubMed  Google Scholar 

  167. Haidarali S, Patil CR, Ojha S, Mohanraj R, Arya DS, Goyal SN (2014) Targeting apoptotic pathways in myocardial infarction: attenuated by phytochemicals. Cardiovasc Hematol Agents Med Chem 12(2):72–85

    Article  CAS  PubMed  Google Scholar 

  168. Shang F, Taylor A (2011) Ubiquitin–proteasome pathway and cellular responses to oxidative stress. Free Radic Biol Med 51(1):5–16. doi:10.1016/j.freeradbiomed.2011.03.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Villeneuve NF, Lau A, Zhang DD (2010) Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxid Redox Signal 13(11):1699–1712. doi:10.1089/ars.2010.3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Nguyen T, Sherratt PJ, Huang HC, Yang CS, Pickett CB (2003) Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. J Biol Chem 278(7):4536–4541. doi:10.1074/jbc.M207293200

    Article  CAS  PubMed  Google Scholar 

  171. Kaspar JW, Niture SK, Jaiswal AK (2009) Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 47(9):1304–1309. doi:10.1016/j.freeradbiomed.2009.07.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Fengsrud M, Roos N, Berg T, Liou W, Slot JW, Seglen PO (1995) Ultrastructural and immunocytochemical characterization of autophagic vacuoles in isolated hepatocytes: effects of vinblastine and asparagine on vacuole distributions. Exp Cell Res 221(2):504–519. doi:10.1006/excr.1995.1402

    Article  CAS  PubMed  Google Scholar 

  173. Orsi A, Polson HE, Tooze SA (2010) Membrane trafficking events that partake in autophagy. Curr Opin Cell Biol 22(2):150–156. doi:10.1016/j.ceb.2009.11.013

    Article  CAS  PubMed  Google Scholar 

  174. Kirkin V, Dikic I (2011) Ubiquitin networks in cancer. Curr Opin Genet Dev 21(1):21–28. doi:10.1016/j.gde.2010.10.004

    Article  CAS  PubMed  Google Scholar 

  175. Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441(2):523–540. doi:10.1042/BJ20111451

    Article  CAS  PubMed  Google Scholar 

  176. Dames SA, Mulet JM, Rathgeb-Szabo K, Hall MN, Grzesiek S (2005) The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. J Biol Chem 280(21):20558–20564. doi:10.1074/jbc.M501116200

    Article  CAS  PubMed  Google Scholar 

  177. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26(7):1749–1760. doi:10.1038/sj.emboj.7601623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Chen Y, Azad MB, Gibson SB (2009) Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16(7):1040–1052. doi:10.1038/cdd.2009.49

    Article  CAS  PubMed  Google Scholar 

  179. Li W, Yang Q, Mao Z (2011) Chaperone-mediated autophagy: machinery, regulation and biological consequences. Cell Mol Life Sci 68(5):749–763. doi:10.1007/s00018-010-0565-6

    Article  CAS  PubMed  Google Scholar 

  180. Wing SS, Chiang HL, Goldberg AL, Dice JF (1991) Proteins containing peptide sequences related to Lys-Phe-Glu-Arg-Gln are selectively depleted in liver and heart, but not skeletal muscle, of fasted rats. Biochem J 275(Pt 1):165–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Spriggs KA, Bushell M, Willis AE (2010) Translational regulation of gene expression during conditions of cell stress. Mol Cell 40(2):228–237. doi:10.1016/j.molcel.2010.09.028

    Article  CAS  PubMed  Google Scholar 

  182. Buchberger A, Bukau B, Sommer T (2010) Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol Cell 40(2):238–252. doi:10.1016/j.molcel.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  183. Leung AK, Sharp PA (2010) MicroRNA functions in stress responses. Mol Cell 40(2):205–215. doi:10.1016/j.molcel.2010.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11(8):545–555. doi:10.1038/nrm2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Li Y, Liu L, Tollefsbol TO (2010) Glucose restriction can extend normal cell lifespan and impair precancerous cell growth through epigenetic control of hTERT and p16 expression. FASEB J 24(5):1442–1453. doi:10.1096/fj.09-149328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Frescas D, Valenti L, Accili D (2005) Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem 280(21):20589–20595. doi:10.1074/jbc.M412357200

    Article  CAS  PubMed  Google Scholar 

  187. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010) The BCL-2 family reunion. Mol Cell 37(3):299–310. doi:10.1016/j.molcel.2010.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Chen ZX, Pervaiz S (2009) BCL-2: pro-or anti-oxidant?. Front Biosci (Elite Ed) 1:263–268

    Google Scholar 

  189. Chen C, Lin H, Karanes C, Pettit GR, Chen BD (2000) Human THP-1 monocytic leukemic cells induced to undergo monocytic differentiation by bryostatin 1 are refractory to proteasome inhibitor-induced apoptosis. Cancer Res 60(16):4377–4385

    CAS  PubMed  Google Scholar 

  190. Poljsak B, Milisav I (2012) Clinical implications of cellular stress responses. Bosn J Basic Med Sci 12(2):122–126

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Naesens M (2011) Replicative senescence in kidney aging, renal disease, and renal transplantation. Discov Med 11(56):65–75

    PubMed  Google Scholar 

  192. Pribenszky C, Vajta G (2011) Cells under pressure: how sublethal hydrostatic pressure stress treatment increases gametes’ and embryos’ performance. Reprod Fertil Dev 23(1):48–55. doi:10.1071/RD10231

    Article  PubMed  Google Scholar 

  193. Sharma RK, Netland PA, Kedrov MA, Johnson DA (2009) Preconditioning protects the retinal pigment epithelium cells from oxidative stress-induced cell death. Acta Ophthalmol 87(1):82–88. doi:10.1111/j.1755-3768.2008.01170.x

    Article  CAS  PubMed  Google Scholar 

  194. Torii T, Miyazawa M, Koyama I (2005) Effect of continuous application of shear stress on liver tissue: continuous application of appropriate shear stress has advantage in protection of liver tissue. Transplant Proc 37(10):4575–4578. doi:10.1016/j.transproceed.2005.10.118

    Article  CAS  PubMed  Google Scholar 

  195. Uchida Y, Tamaki T, Tanaka M, Kaizu T, Tsuchihashi S, Takahashi T, Kawamura A, Kakita A (2003) Induction of specific stress response increases resistance of rat liver allografts to cold ischemia and reperfusion injury. Transpl Int 16(6):396–404. doi:10.1007/s00147-003-0550-1

    Article  CAS  PubMed  Google Scholar 

  196. Harrison EM, Sharpe E, Bellamy CO, McNally SJ, Devey L, Garden OJ, Ross JA, Wigmore SJ (2008) Heat shock protein 90-binding agents protect renal cells from oxidative stress and reduce kidney ischemia–reperfusion injury. Am J Physiol Renal Physiol 295 (2):F397-405. doi:10.1152/ajprenal.00361.2007

    PubMed  Google Scholar 

  197. Wang X, Zhao T, Huang W, Wang T, Qian J, Xu M, Kranias EG, Wang Y, Fan GC (2009) Hsp20-engineered mesenchymal stem cells are resistant to oxidative stress via enhanced activation of Akt and increased secretion of growth factors. Stem Cells 27(12):3021–3031. doi:10.1002/stem.230

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Murry CE, Richard VJ, Reimer KA, Jennings RB (1990) Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ Res 66(4):913–931

    Article  CAS  PubMed  Google Scholar 

  199. Vander Heide R (2011) Clinically useful cardioprotection: ischemic preconditioning then and now. J Cardiovasc Pharmacol Ther 16(3–4):251–254. doi:10.1177/1074248411407070

    Article  PubMed  Google Scholar 

  200. Fairbanks SL, Brambrink AM (2010) Preconditioning and postconditioning for neuroprotection: the most recent evidence. Best Pract Res Clin Anaesthesiol 24(4):521–534. doi:10.1016/j.bpa.2010.10.004

    Article  PubMed  Google Scholar 

  201. Shihab FS (2009) Preconditioning: from experimental findings to novel therapies in acute kidney injury. Minerva Urol Nefrol 61(3):143–157

    CAS  PubMed  Google Scholar 

  202. Theodoraki K, Tympa A, Karmaniolou I, Tsaroucha A, Arkadopoulos N, Smyrniotis V (2011) Ischemia/reperfusion injury in liver resection: a review of preconditioning methods. Surg Today 41(5):620–629. doi:10.1007/s00595-010-4444-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I. M. is supported by Grant P3-0019 and S. R. by Grant P3-0171 funded by the Ministry of Education, Science, Culture and Sport of Republic of Slovenia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Milisav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milisav, I., Poljšak, B. & Ribarič, S. Reduced risk of apoptosis: mechanisms of stress responses. Apoptosis 22, 265–283 (2017). https://doi.org/10.1007/s10495-016-1317-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1317-3

Keywords

Navigation