Skip to main content
Log in

Clitocine potentiates TRAIL-mediated apoptosis in human colon cancer cells by promoting Mcl-1 degradation

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Among anti-cancer candidate drugs, TRAIL might be the most specific agent against cancer cells due to its low toxicity to normal cells. Unfortunately, cancer cells usually develop drug resistance to TRAIL, which is a major obstacle for its clinical application. One promising strategy is co-administrating with sensitizer to overcome cancer cells resistance to TRAIL. Clitocine, a natural amino nucleoside purified from wild mushroom, is recently demonstrated that can induce apoptosis in multidrug-resistant human cancer cells by targeting Mcl-1. In the present study,we found that pretreatment with clitocine dramatically enhances TRAIL lethality in its resistant human colon cancer cells by inducing apoptosis. More importantly, combination of clitocine and TRAIL also effectively inhibits xenograft growth and induces tumor cells apoptosis in athymic mice. The disruption of the binding between Mcl-1 and Bak as well as mitochondrial translocation of Bax mediated by clitocine are identified as the key underlying mechanisms, which leading to mitochondrial membrane permeabilization. Enforced exogenous Mcl-1 can effectively attenuate clitocine/TRAIL-induced apoptosis by suppressing the activation of intrinsic apoptotic pathway. Furthermore, clitocine regulates Mcl-1 expression at the posttranslational level as no obvious change is observed on mRNA level and proteasome inhibitor MG132 almost blocks the Mcl-1 suppression by clitocine. In fact, more ubiquitinated Mcl-1 was detected under clitocine treatment. Our findings indicate that clitocine is potentially an effective adjuvant agent in TRAIL-based cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Longley DB, Johnston PG (2005) Molecular mechanisms of drug resistance. J Pathol 205:275–292

    Article  CAS  PubMed  Google Scholar 

  2. Holoch PA, Griffith TS (2009) TNF-related apoptosis-inducing ligand (TRAIL): a new path to anti-cancer therapies. Eur J Pharmacol 625:63–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lemke J, von Karstedt S, Abd El Hay M et al (2014) Selective CDK9 inhibition overcomes TRAIL resistance by concomitant suppression of cFlip and Mcl-1. Cell Death Differ 21:491–502

    Article  CAS  PubMed  Google Scholar 

  4. Bellail AC, Qi L, Mulligan P, Chhabra V, Hao C (2009) TRAIL agonists on clinical trials for cancer therapy: the promises and the challenges. Rev Recent Clin Trials 4:34–41

    Article  CAS  PubMed  Google Scholar 

  5. Zhang L, Fang B (2005) Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther 12:228–237

    Article  CAS  PubMed  Google Scholar 

  6. Kubo I, Kim M, Hood WF, Naoki H (1986) Clitocine, a new insecticidal nucleoside from the mushroom clitocybe inversa. Tetrahedron Lett 27:4277–4280

    Article  CAS  Google Scholar 

  7. Moss RJ, Petrie CR, Meyer RB Jr et al (1988) Synthesis, intramolecular hydrogen bonding, and biochemical studies of clitocine, a naturally occurring exocyclic amino nucleoside. J Med Chem 31:786–790

    Article  CAS  PubMed  Google Scholar 

  8. Fortin H, Tomasi S, Delcros JG, Bansard JY, Boustie J (2006) In vivo antitumor activity of clitocine, an exocyclic amino nucleoside isolated from Lepista inversa. ChemMedChem 1:189–196

    Article  CAS  PubMed  Google Scholar 

  9. Ren G, Zhao YP, Yang L, Fu CX (2008) Anti-proliferative effect of clitocine from the mushroom Leucopaxillus giganteus on human cervical cancer HeLa cells by inducing apoptosis. Cancer Lett 262:190–200

    Article  CAS  PubMed  Google Scholar 

  10. Sun J, Yeung CA, Co NN et al (2012) Clitocine reversal of P-glycoprotein associated multi-drug resistance through down-regulation of transcription factor NF-kappaB in R-HepG2 cell line. PLoS One 7:e40720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun JG, Li H, Li X et al (2014) Clitocine targets Mcl-1 to induce drug-resistant human cancer cell apoptosis in vitro and tumor growth inhibition in vivo. Apoptosis 19(5):871–882

    Article  CAS  PubMed  Google Scholar 

  12. Baguley BC (2010) Multiple drug resistance mechanisms in cancer. Mol Biotechnol 46:308–316

    Article  CAS  PubMed  Google Scholar 

  13. Thomas S, Quinn BA, Das SK et al (2013) Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets 17:61–75

    Article  CAS  PubMed  Google Scholar 

  14. Hermanson DL, Das SG, Li Y, Xing C (2013) Overexpression of Mcl-1 confers multidrug resistance, whereas topoisomerase IIbeta downregulation introduces mitoxantrone-specific drug resistance in acute myeloid leukemia. Mol Pharmacol 84:236–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boiani M, Daniel C, Liu X, Hogarty MD, Marnett LJ (2013) The stress protein BAG3 stabilizes Mcl-1 protein and promotes survival of cancer cells and resistance to antagonist ABT-737. J Biol Chem 288:6980–6990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yecies D, Carlson NE, Deng J, Letai A (2010) Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1. Blood 115:3304–3313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tromp JM, Geest CR, Breij EC et al (2012) Tipping the Noxa/Mcl-1 balance overcomes ABT-737 resistance in chronic lymphocytic leukemia. Clin Cancer Res 18:487–498

    Article  CAS  PubMed  Google Scholar 

  18. Muller A, Zang C, Chumduri C, Dorken B, Daniel PT, Scholz CW (2013) Concurrent inhibition of PI3K and mTORC1/mTORC2 overcomes resistance to rapamycin induced apoptosis by down-regulation of Mcl-1 in mantle cell lymphoma. Int J Cancer 133:1813–1824

    Article  PubMed  Google Scholar 

  19. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420

    CAS  PubMed  Google Scholar 

  20. Oltersdorf T, Elmore SW, Shoemaker AR et al (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681

    Article  CAS  PubMed  Google Scholar 

  21. Liu F, Liu Q, Yang D et al (2011) Verticillin A overcomes apoptosis resistance in human colon carcinoma through DNA methylation-dependent upregulation of BNIP3. Cancer Res 71:6807–6816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pan G, O’Rourke K, Chinnaiyan AM et al (1997) The receptor for the cytotoxic ligand TRAIL. Science 276:111–113

    Article  CAS  PubMed  Google Scholar 

  23. Eggert A, Grotzer MA, Zuzak TJ et al (2001) Resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in neuroblastoma cells correlates with a loss of caspase-8 expression. Cancer Res 61:1314–1319

    CAS  PubMed  Google Scholar 

  24. Daniel PT, Wieder T, Sturm I, Schulze-Osthoff K (2001) The kiss of death: promises and failures of death receptors and ligands in cancer therapy. Leukemia 15:1022–1032

    Article  CAS  PubMed  Google Scholar 

  25. Shore GC, Nguyen M (2008) Bcl-2 proteins and apoptosis: choose your partner. Cell 135:1004–1006

    Article  CAS  PubMed  Google Scholar 

  26. Chao DT, Korsmeyer SJ (1998) BCL-2 family: regulators of cell death. Annu Rev Immunol 16:395–419

    Article  CAS  PubMed  Google Scholar 

  27. Yip KW, Reed JC (2008) Bcl-2 family proteins and cancer. Oncogene 27:6398–6406

    Article  CAS  PubMed  Google Scholar 

  28. Kim SH, Ricci MS, El-Deiry WS (2008) Mcl-1: a gateway to TRAIL sensitization. Cancer Res 68:2062–2064

    Article  CAS  PubMed  Google Scholar 

  29. Chen J, Yang B, Cheng X et al (2012) Salmonella-mediated tumor-targeting TRAIL gene therapy significantly suppresses melanoma growth in mouse model. Cancer Sci 103:325–333

    Article  CAS  PubMed  Google Scholar 

  30. Chen J, Wei D, Zhuang H et al (2011) Proteomic screening of anaerobically regulated promoters from Salmonella and its antitumor applications. Mol Cell Proteom MCP 10(M111):009399

    Google Scholar 

  31. Bacchelli C, Condom R, Patino N, Aubertin AM (2000) Synthesis and biological activities of new carbaacyclonucleosides and 1’-oxaacyclonucleosides related to clitocine. Nucleosides Nucleotides Nucleic Acids 19:567–584

    Article  CAS  PubMed  Google Scholar 

  32. Lee CH, Daanen JF, Jiang M et al (2001) Synthesis and biological evaluation of clitocine analogues as adenosine kinase inhibitors. Bioorg Med Chem Lett 11:2419–2422

    Article  CAS  PubMed  Google Scholar 

  33. Wang X, Chen W, Zeng W et al (2008) Akt-mediated eminent expression of c-FLIP and Mcl-1 confers acquired resistance to TRAIL-induced cytotoxicity to lung cancer cells. Mol Cancer Ther 7:1156–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kobayashi S, Werneburg NW, Bronk SF, Kaufmann SH, Gores GJ (2005) Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Gastroenterology 128:2054–2065

    Article  CAS  PubMed  Google Scholar 

  35. Taniai M, Grambihler A, Higuchi H et al (2004) Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells. Cancer Res 64:3517–3524

    Article  CAS  PubMed  Google Scholar 

  36. Lirdprapamongkol K, Sakurai H, Abdelhamed S et al (2013) Chrysin overcomes TRAIL resistance of cancer cells through Mcl-1 downregulation by inhibiting STAT3 phosphorylation. Int J Oncol 43:329–337

    CAS  PubMed  Google Scholar 

  37. Gillissen B, Wendt J, Richter A et al (2010) Endogenous Bak inhibitors Mcl-1 and Bcl-xL: differential impact on TRAIL resistance in Bax-deficient carcinoma. J Cell Biol 188:851–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21:92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    Article  CAS  PubMed  Google Scholar 

  40. Chen S, Dai Y, Harada H, Dent P, Grant S (2007) Mcl-1 down-regulation potentiates ABT-737 lethality by cooperatively inducing Bak activation and Bax translocation. Cancer Res 67:782–791

    Article  CAS  PubMed  Google Scholar 

  41. Xin M, Li R, Xie M et al (2014) Small-molecule Bax agonists for cancer therapy. Nature communications 5:4935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Domina AM, Vrana JA, Gregory MA, Hann SR, Craig RW (2004) MCL1 is phosphorylated in the PEST region and stabilized upon ERK activation in viable cells, and at additional sites with cytotoxic okadaic acid or taxol. Oncogene 23:5301–5315

    Article  CAS  PubMed  Google Scholar 

  43. De Biasio A, Vrana JA, Zhou P et al (2007) N-terminal truncation of antiapoptotic MCL1, but not G2/M-induced phosphorylation, is associated with stabilization and abundant expression in tumor cells. J Biol Chem 282:23919–23936

    Article  PubMed  Google Scholar 

  44. Gojo I, Zhang B, Fenton RG (2002) The cyclin-dependent kinase inhibitor flavopiridol induces apoptosis in multiple myeloma cells through transcriptional repression and down-regulation of Mcl-1. Clin Cancer Res 8:3527–3538

    CAS  PubMed  Google Scholar 

  45. Aymerich I, Foufelle F, Ferré P, Casado FJ, Pastor-Anglada M (2006) Extracellular adenosine activates AMP-dependent protein kinase (AMPK). J Cell Sci 119:1612–1621

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (No. 31570811), Natural Science Foundation of Zhejiang Province (LY15C020001) and Si-Yuan Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei-yan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest control.

Additional information

Jian-guo Sun, Feng Ruan, and Xue-li Zeng have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10495_2016_1273_MOESM1_ESM.tif

Figure S1. HPLC analysis for clitocine. HP1100 C8 column (Hypersil ODS 20×250 mm) was used in this assay with a mobile phase of Methanol/water (95:5 (v/v)) at a flow rate of 8ml/min.Supplementary material 1 (TIFF 1942 kb)

10495_2016_1273_MOESM2_ESM.tif

Figure S2. The cytotoxicity of TRAIL and clitocine on six human colon cancer cell lines. A, human colon cells SW620, SW480, LS411N, Caco-2, HCT116 and RKO were treated with indicated concentrations of TRAIL for 24h and then analyzed by MTT assay to determine the sensitivities of different cancer cell lines to TRAIL. B, Human colon cancer cells were treated with indicated concentrations of clitocine for 48 h and subject to MTT assay. Data are presented as mean ± SD, n=3. Supplementary material 2 (TIFF 602 kb)

10495_2016_1273_MOESM3_ESM.tif

Figure S3. The intrinsic apoptotic pathway is indispensable for sensitization activity of Clitocine on TRAIL in human colon cancer cells. LS411N and SW620 cells were pre-treated with vehicle, 20 μM caspase 8 or 9 inhibitor for 2h followed by 0.2 μM clitocine treatment for 24h. Then, cells were incubated with 100 ng/ml TRAIL for another 12h. After treatment, LS411N and SW620 cells were subjected to Annexin V-FITC & PI staining. Flow cytometry assay was performed to detect the percentage of apoptotic cells. Data are presented as mean ± SD, n=3. ** P < 0.01 vs. respective control. Supplementary material 3 (TIFF 466 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Jg., Ruan, F., Zeng, Xl. et al. Clitocine potentiates TRAIL-mediated apoptosis in human colon cancer cells by promoting Mcl-1 degradation. Apoptosis 21, 1144–1157 (2016). https://doi.org/10.1007/s10495-016-1273-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1273-y

Keywords

Navigation