Skip to main content

Advertisement

Log in

A modified thymosin alpha 1 inhibits the growth of breast cancer both in vitro and in vivo: suppressment of cell proliferation, inducible cell apoptosis and enhancement of targeted anticancer effects

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Thymosin alpha 1 (Tα1) is commonly used for treating several diseases; however its usage has been limited because of poor penetration of the target tissue, such as tumor cells. In the present study, Tα1-iRGD, a peptide by conjugating Tα1 with the iRGD fragment, was evaluated its performance in MCF-7 and MDA-MB-231 human breast cancer cells. Compared with the wild-type peptide, Tα1-iRGD was more selective in binding tumor cells in the cell attachment assay. Furthermore, the MTT assay confirmed that Tα1-iRGD proved more effective in significantly inhibiting the growth of MCF-7 cells in contrast to the general inhibition displayed by Tα1. Further, conjugation of Tα1 with iRGD preserved the immunomodulatory activity of the drug by increasing the proliferation of mouse spleen lymphocytes. Further, compared with Tα1 treatment, Tα1-iRGD treatment of MCF-7 cells considerably increased the number of cells undergoing apoptosis, resulting in a dose-dependent inhibition of cancer cell growth, which was associated with a much better effect on up-regulation of the expression of BCL2-associated X protein (Bax), caspase 9, etc. More importantly, treatment with Ta1-iRGD was more efficacious than treatment with Ta1 in vivo. This study highlights the importance of iRGD on enhancement of cell penetration and tumor accumulation. In summary, our findings demonstrate that the novel modified Tα1 developed in this study has the potential to be used for treating breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Goldstein AL, Low TL, McAdoo M, McClure J, Thurman GB et al (1977) Thymosin alpha1: isolation and sequence analysis of an immunologically active thymic polypeptide. Proc Natl Acad Sci USA 74:725–729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Hadden JW (2003) Immunodeficiency and cancer: prospects for correction. Int Immunopharmacol 3:1061–1071

    Article  CAS  PubMed  Google Scholar 

  3. Leung N (2002) Treatment of chronic hepatitis B: case selection and duration of therapy. J Gastroenterol Hepatol 17:409–414

    Article  PubMed  Google Scholar 

  4. Chadwick D, Pido-Lopez J, Pires A, Imami N, Gotch F et al (2003) A pilot study of the safety and efficacy of thymosin alpha 1 in augmenting immune reconstitution in HIV-infected patients with low CD4 counts taking highly active antiretroviral therapy. Clin Exp Immunol 134:477–481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Goldstein AL, Goldstein AL (2009) From lab to bedside: emerging clinical applications of thymosin alpha 1. Expert Opin Biol Ther 9:593–608

    Article  CAS  PubMed  Google Scholar 

  6. Danielli R, Fonsatti E, Calabro L, Di Giacomo AM, Maio M (2012) Thymosin alpha1 in melanoma: from the clinical trial setting to the daily practice and beyond. Ann N Y Acad Sci 1270:8–12

    Article  CAS  PubMed  Google Scholar 

  7. Garaci E, Pica F, Rasi G, Favalli C (2000) Thymosin alpha 1 in the treatment of cancer: from basic research to clinical application. Int J Immunopharmacol 22:1067–1076

    Article  CAS  PubMed  Google Scholar 

  8. Garaci E, Pica F, Sinibaldi-Vallebona P, Pierimarchi P, Mastino A et al (2003) Thymosin alpha(1) in combination with cytokines and chemotherapy for the treatment of cancer. Int Immunopharmacol 3:1145–1150

    Article  CAS  PubMed  Google Scholar 

  9. Garaci E, Lopez M, Bonsignore G, Della Giulia M, D’Aprile M et al (1995) Sequential chemoimmunotherapy for advanced non-small cell lung cancer using cisplatin, etoposide, thymosin-alpha 1 and interferon-alpha 2a. Eur J Cancer 31A:2403–2405

    Article  CAS  PubMed  Google Scholar 

  10. Lopez M, Carpano S, Cavaliere R, Di Lauro L, Ameglio F et al (1994) Biochemotherapy with thymosin alpha 1, interleukin-2 and dacarbazine in patients with metastatic melanoma: clinical and immunological effects. Ann Oncol 5:741–746

    CAS  PubMed  Google Scholar 

  11. Bepler G (1994) Thymosin alpha-1 as adjunct for conventional therapy of malignant-tumors—a review. Cancer Investig 12:491–496

    Article  CAS  Google Scholar 

  12. Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L et al (2009) Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 16:510–520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L et al (2010) Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328:1031–1035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Ruoslahti E (2002) Specialization of tumour vasculature. Nat Rev Cancer 2:83–90

    Article  PubMed  Google Scholar 

  15. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Teesalu T, Sugahara KN, Kotamraju VR, Ruoslahti E (2009) C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc Natl Acad Sci USA 106:16157–16162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Roth L, Agemy L, Kotamraju VR, Braun G, Teesalu T et al (2012) Transtumoral targeting enabled by a novel neuropilin-binding peptide. Oncogene 31:3754–3763

    Article  CAS  PubMed  Google Scholar 

  18. Lao X, Liu M, Chen J, Zheng H (2013) A tumor-penetrating Peptide modification enhances the antitumor activity of thymosin alpha 1. PLoS One 8:e72242

    Article  PubMed Central  PubMed  Google Scholar 

  19. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47:936–942

    CAS  PubMed  Google Scholar 

  20. Wang P, Ballestrem C, Streuli CH (2011) The C terminus of talin links integrins to cell cycle progression. J Cell Biol 195:499–513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Wang J, Chen B, Jin N, Xia G, Chen Y et al (2011) The changes of T lymphocytes and cytokines in ICR mice fed with Fe3O4 magnetic nanoparticles. Int J Nanomed 6:605–610

    Article  CAS  Google Scholar 

  22. Rossi A, Lord JM (2013) Adiponectin inhibits neutrophil apoptosis via activation of AMP kinase, PKB and ERK 1/2 MAP kinase. Apoptosis 18:1469–1480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184:39–51

    Article  CAS  PubMed  Google Scholar 

  24. Shetty J, Klotz KL, Wolkowicz MJ, Flickinger CJ, Herr JC (2007) Radial spoke protein 44 (human meichroacidin) is an axonemal alloantigen of sperm and cilia. Gene 396:93–107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Xu HM, Yin R, Chen L, Siraj S, Huang X et al (2008) An RGD-modified endostatin-derived synthetic peptide shows antitumor activity in vivo. Bioconjug Chem 19:1980–1986

    Article  CAS  PubMed  Google Scholar 

  26. Yang W, Luo D, Wang S, Wang R, Chen R et al (2008) TMTP1, a novel tumor-homing peptide specifically targeting metastasis. Clin Cancer Res 14:5494–5502

    Article  CAS  PubMed  Google Scholar 

  27. Elizondo-Riojas MA, Chamow SM, Tuthill CW, Gorenstein DG, Volk DE (2011) NMR structure of human thymosin alpha-1. Biochem Biophys Res Commun 416:356–361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Jarvis A, Allerston CK, Jia H, Herzog B, Garza-Garcia A et al (2010) Small molecule inhibitors of the neuropilin-1 vascular endothelial growth factor A (VEGF-A) interaction. J Med Chem 53:2215–2226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52:80–87

    Article  CAS  PubMed  Google Scholar 

  30. Vintonenko N, Pelaez-Garavito I, Buteau-Lozano H, Toullec A, Lidereau R et al (2011) Overexpression of VEGF189 in breast cancer cells induces apoptosis via NRP1 under stress conditions. Cell Adhes Migr 5:332–343

    Article  Google Scholar 

  31. Jubb AM, Strickland LA, Liu SD, Mak J, Schmidt M et al (2012) Neuropilin-1 expression in cancer and development. J Pathol 226:50–60

    Article  CAS  PubMed  Google Scholar 

  32. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Riedl SJ, Salvesen GS (2007) The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8:405–413

    Article  CAS  PubMed  Google Scholar 

  34. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  CAS  PubMed  Google Scholar 

  35. Cepero E, King AM, Coffey LM, Perez RG, Boise LH (2005) Caspase-9 and effector caspases have sequential and distinct effects on mitochondria. Oncogene 24:6354–6366

    CAS  PubMed  Google Scholar 

  36. Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH (2013) Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol 14:32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Wang K, Zhang XF, Liu Y, Liu C, Jiang BH et al (2014) Tumor penetrability and anti-angiogenesis using iRGD-mediated delivery of doxorubicin-polymer conjugates. Biomaterials 35:8735–8747

    Article  CAS  PubMed  Google Scholar 

  38. Becker PM, Waltenberger J, Yachechko R, Mirzapoiazova T, Sham JS et al (2005) Neuropilin-1 regulates vascular endothelial growth factor-mediated endothelial permeability. Circ Res 96:1257–1265

    Article  CAS  PubMed  Google Scholar 

  39. Romani L, Bistoni F, Gaziano R, Bozza S, Montagnoli C et al (2004) Thymosin alpha 1 activates dendritic cells for antifungal Th1 resistance through toll-like receptor signaling. Blood 103:4232–4239

    Article  CAS  PubMed  Google Scholar 

  40. Leichtling KD, Serrate SA, Sztein MB (1990) Thymosin alpha 1 modulates the expression of high affinity interleukin-2 receptors on normal human lymphocytes. Int J Immunopharmacol 12:19–29

    Article  CAS  PubMed  Google Scholar 

  41. Garaci E, Pica F, Serafino A, Balestrieri E, Matteucci C et al (2012) Thymosin alpha1 and cancer: action on immune effector and tumor target cells. Ann N Y Acad Sci 1269:26–33

    Article  CAS  PubMed  Google Scholar 

  42. Pica F, Fraschetti M, Matteucci C, Tuthill C, Rasi G (1998) High doses of thymosin alpha 1 enhance the anti-tumor efficacy of combination chemo-immunotherapy for murine B16 melanoma. Anticancer Res 18:3571–3578

    CAS  PubMed  Google Scholar 

  43. Moody TW, Fagarasan M, Zia F, Cesnjaj M, Goldstein AL (1993) Thymosin alpha 1 down-regulates the growth of human non-small cell lung cancer cells in vitro and in vivo. Cancer Res 53:5214–5218

    CAS  PubMed  Google Scholar 

  44. Mastino A, Favalli C, Grelli S, Rasi G, Pica F et al (1992) Combination therapy with thymosin alpha 1 potentiates the anti-tumor activity of interleukin-2 with cyclophosphamide in the treatment of the Lewis lung carcinoma in mice. Int J Cancer 50:493–499

    Article  CAS  PubMed  Google Scholar 

  45. Moody TW (2007) Thymosin alpha1 as a chemopreventive agent in lung and breast cancer. Ann N Y Acad Sci 1112:297–304

    Article  CAS  PubMed  Google Scholar 

  46. Eliceiri BP, Cheresh DA (2001) Adhesion events in angiogenesis. Curr Opin Cell Biol 13:563–568

    Article  CAS  PubMed  Google Scholar 

  47. Parker MW, Xu P, Li X, Vander Kooi CW (2012) Structural basis for selective vascular endothelial growth factor-A (VEGF-A) binding to neuropilin-1. J Biol Chem 287:11082–11089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Fan YZ, Chang H, Yu Y, Liu J, Wang R (2006) Thymosin alpha1 suppresses proliferation and induces apoptosis in human leukemia cell lines. Peptides 27:2165–2173

    Article  CAS  PubMed  Google Scholar 

  49. Panchal RG (1998) Novel therapeutic strategies to selectively kill cancer cells. Biochem Pharmacol 55:247–252

    Article  CAS  PubMed  Google Scholar 

  50. Schwartz GK, Shah MA (2005) Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol 23:9408–9421

    Article  CAS  PubMed  Google Scholar 

  51. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Jing Li for the discussions and helpful suggestions during this investigation. This work was supported by the National Natural Science Foundation of China (Grant No. 31300643) and a grant from the National High Technology Research and Development Program of China (863) (No. 2012AA020304) and the Fundamental Research Funds for the Central Universities (PT2014SK0062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangdong Gao or Heng Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lao, X., Li, B., Liu, M. et al. A modified thymosin alpha 1 inhibits the growth of breast cancer both in vitro and in vivo: suppressment of cell proliferation, inducible cell apoptosis and enhancement of targeted anticancer effects. Apoptosis 20, 1307–1320 (2015). https://doi.org/10.1007/s10495-015-1151-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1151-z

Keywords

Navigation