Skip to main content

Advertisement

Log in

The Bcl-2 family: structures, interactions and targets for drug discovery

  • The Domains of Apoptosis and Inflammation
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Two phylogenetically and structurally distinct groups of proteins regulate stress induced intrinsic apoptosis, the programmed disassembly of cells. Together they form the B cell lymphoma-2 (Bcl-2) family. Bcl-2 proteins appeared early in metazoan evolution and are identified by the presence of up to four short conserved sequence blocks known as Bcl-2 homology (BH) motifs, or domains. The simple BH3-only proteins bear only a BH3-motif and are intrinsically disordered proteins and antagonize or activate the other group, the multi-motif Bcl-2 proteins that have up to four BH motifs, BH1-BH4. Multi-motif Bcl-2 proteins are either pro-survival or pro-apoptotic in action and have remarkably similar α-helical bundle structures that provide a binding groove formed from the BH1, BH2, and BH3-motifs for their BH3-bearing antagonists. In mammals a network of interactions between Bcl-2 members regulates mitochondrial outer membrane permeability (MOMP) and efflux of cytochrome c and other death inducing factors from mitochondria to initiate the apoptotic caspase cascade, but the molecular events leading to MOMP are uncertain. Dysregulation of the Bcl-2 family occurs in many diseases and pathogenic viruses have assimilated pro-survival Bcl-2 proteins to evade immune responses. Their role in disease has made the Bcl-2 family the focus of drug design attempts and clinical trials are showing promise for ‘BH3-mimics’, drugs that mimic the ability of BH3-only proteins to neutralize selected pro-survival proteins to induce cell death in tumor cells. This review focuses on the structural biology of Bcl-2 family proteins, their interactions and attempts to harness them as targets for drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    CAS  PubMed  Google Scholar 

  2. Strasser A, Cory S, Adams JM (2011) Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J 30:3667–3683

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Aouacheria A, Brunet F, Gouy M (2005) Phylogenomics of life-or-death switches in multicellular animals: Bcl-2, BH3-Only, and BNip families of apoptotic regulators. Mol Biol Evol 22:2395–2416

    CAS  PubMed  Google Scholar 

  4. Rech de Laval V, Deleage G, Aouacheria A, Combet C (2014) BCL2DB: database of BCL-2 family members and BH3-only proteins. Database (Oxford) 2014:bau013

    Google Scholar 

  5. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Shamas-Din A, Kale J, Leber B, Andrews DW (2013) Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb Perspect Biol 5:a008714

    PubMed  Google Scholar 

  7. Kvansakul M, Hinds MG (2013) Structural biology of the Bcl-2 family and its mimicry by viral proteins. Cell Death Dis 4:e909

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Oberst A, Bender C, Green DR (2008) Living with death: the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ 15:1139–1146

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Metzstein MM, Stanfield GM, Horvitz HR (1998) Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet 14:410–416

    CAS  PubMed  Google Scholar 

  10. Schumacher B, Schertel C, Wittenburg N, Tuck S, Mitani S, Gartner A, Conradt B, Shaham S (2005) C. elegans ced-13 can promote apoptosis and is induced in response to DNA damage. Cell Death Differ 12:153–161

    CAS  PubMed  Google Scholar 

  11. Zmasek CM, Godzik A (2013) Evolution of the animal apoptosis network. Cold Spring Harb Perspect Biol 5:a008649

    PubMed  Google Scholar 

  12. Moriishi K, Huang DC, Cory S, Adams JM (1999) Bcl-2 family members do not inhibit apoptosis by binding the caspase activator Apaf-1. Proc Natl Acad Sci U S A 96:9683–9688

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Rooswinkel RW, van de Kooij B, de Vries E, Paauwe M, Braster R, Verheij M, Borst J (2014) Antiapoptotic potency of Bcl-2 proteins primarily relies on their stability, not binding selectivity. Blood 123:2806–2815

    CAS  PubMed  Google Scholar 

  14. Domazet-Loso T, Tautz D (2010) Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa. BMC Biol 8:66

    PubMed Central  PubMed  Google Scholar 

  15. Domazet-Loso T, Klimovich A, Anokhin B, Anton-Erxleben F, Hamm MJ, Lange C, Bosch TC (2014) Naturally occurring tumours in the basal metazoan Hydra. Nat Commun 5:4222

    CAS  PubMed  Google Scholar 

  16. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    CAS  PubMed  Google Scholar 

  17. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  18. Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15:49–63

    CAS  PubMed  Google Scholar 

  19. Yip KW, Reed JC (2008) Bcl-2 family proteins and cancer. Oncogene 27:6398–6406

    CAS  PubMed  Google Scholar 

  20. Kelly PN, Strasser A (2011) The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death Differ 18:1414–1424

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM (1984) Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226:1097–1099

    CAS  PubMed  Google Scholar 

  22. Tsujimoto Y, Gorham J, Cossman J, Jaffe E, Croce CM (1985) The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science 229:1390–1393

    CAS  PubMed  Google Scholar 

  23. Tsujimoto Y, Croce CM (1986) Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci U S A 83:5214–5218

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Vaux DL, Cory S, Adams JM (1988) Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335:440–442

    CAS  PubMed  Google Scholar 

  25. Galluzzi L, Brenner C, Morselli E, Touat Z, Kroemer G (2008) Viral control of mitochondrial apoptosis. PLoS Pathog 4:e1000018

    PubMed Central  PubMed  Google Scholar 

  26. Fesik SW (2005) Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 5:876–885

    CAS  PubMed  Google Scholar 

  27. Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong SL, Ng SL, Fesik SW (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381:335–341

    CAS  PubMed  Google Scholar 

  28. Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M, Yoon HS, Shuker SB, Chang BS, Minn AJ, Thompson CB, Fesik SW (1997) Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275:983–986

    CAS  PubMed  Google Scholar 

  29. Aritomi M, Kunishima N, Inohara N, Ishibashi Y, Ohta S, Morikawa K (1997) Crystal structure of rat Bcl-xL. Implications for the function of the Bcl-2 protein family. J Biol Chem 272:27886–27892

    CAS  PubMed  Google Scholar 

  30. Yan N, Chai J, Lee ES, Gu L, Liu Q, He J, Wu JW, Kokel D, Li H, Hao Q, Xue D, Shi Y (2005) Structure of the CED-4-CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans. Nature 437:831–837

    CAS  PubMed  Google Scholar 

  31. Huang Q, Petros AM, Virgin HW, Fesik SW, Olejniczak ET (2002) Solution structure of a Bcl-2 homolog from Kaposi sarcoma virus. Proc Natl Acad Sci U S A 99:3428–3433

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Huang Q, Petros AM, Virgin HW, Fesik SW, Olejniczak ET (2003) Solution structure of the BHRF1 protein from Epstein-Barr virus, a homolog of human Bcl-2. J Mol Biol 332:1123–1130

    CAS  PubMed  Google Scholar 

  33. Wilson WH, O’Connor OA, Czuczman MS, LaCasce AS, Gerecitano JF, Leonard JP, Tulpule A, Dunleavy K, Xiong H, Chiu YL, Cui Y, Busman T, Elmore SW, Rosenberg SH, Krivoshik AP, Enschede SH, Humerickhouse RA (2010) Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol 11:1149–1159

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Lanave C, Santamaria M, Saccone C (2004) Comparative genomics: the evolutionary history of the Bcl-2 family. Gene 333:71–79

    CAS  PubMed  Google Scholar 

  35. Blaineau SV, Aouacheria A (2009) BCL2DB: moving ‘helix-bundled’ BCL-2 family members to their database. Apoptosis 14:923–925

    PubMed  Google Scholar 

  36. Aouacheria A, Rech de Laval V, Combet C, Hardwick JM (2013) Evolution of Bcl-2 homology motifs: homology versus homoplasy. Trends Cell Biol 23:103–111

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Aouacheria A (2014) The BCL-2 database, Act 2: moving beyond dualism to diversity and pleiotropy. Cell Death Dis 5:e981

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Kvansakul M, Yang H, Fairlie WD, Czabotar PE, Fischer SF, Perugini MA, Huang DC, Colman PM (2008) Vaccinia virus anti-apoptotic F1L is a novel Bcl-2-like domain-swapped dimer that binds a highly selective subset of BH3-containing death ligands. Cell Death Differ 15:1564–1571

    CAS  PubMed  Google Scholar 

  39. Coultas L, Huang DC, Adams JM, Strasser A (2002) Pro-apoptotic BH3-only Bcl-2 family members in vertebrate model organisms suitable for genetic experimentation. Cell Death Differ 9:1163–1166

    CAS  PubMed  Google Scholar 

  40. Hardwick JM, Chen YB, Jonas EA (2012) Multipolar functions of BCL-2 proteins link energetics to apoptosis. Trends Cell Biol 22:318–328

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Day CL, Chen L, Richardson SJ, Harrison PJ, Huang DC, Hinds MG (2005) Solution structure of prosurvival Mcl-1 and characterization of its binding by proapoptotic BH3-only ligands. J Biol Chem 280:4738–4744

    CAS  PubMed  Google Scholar 

  42. Zha H, Aime-Sempe C, Sato T, Reed JC (1996) Proapoptotic protein Bax heterodimerizes with Bcl-2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J Biol Chem 271:7440–7444

    CAS  PubMed  Google Scholar 

  43. Huang DC, Strasser A (2000) BH3-Only proteins-essential initiators of apoptotic cell death. Cell 103:839–842

    CAS  PubMed  Google Scholar 

  44. Day CL, Smits C, Fan FC, Lee EF, Fairlie WD, Hinds MG (2008) Structure of the BH3 domains from the p53-inducible BH3-only proteins Noxa and Puma in complex with Mcl-1. J Mol Biol 380:958–971

    CAS  PubMed  Google Scholar 

  45. Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM, Day CL, Adams JM, Huang DC (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17:393–403

    CAS  PubMed  Google Scholar 

  46. Wilson-Annan J, O’Reilly LA, Crawford SA, Hausmann G, Beaumont JG, Parma LP, Chen L, Lackmann M, Lithgow T, Hinds MG, Day CL, Adams JM, Huang DC (2003) Proapoptotic BH3-only proteins trigger membrane integration of prosurvival Bcl-w and neutralize its activity. J Cell Biol 162:877–887

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Beverly LJ (2012) Regulation of anti-apoptotic BCL2-proteins by non-canonical interactions: the next step forward or two steps back? J Cell Biochem 113:3–12

    CAS  PubMed  Google Scholar 

  48. DeBartolo J, Taipale M, Keating AE (2014) Genome-wide prediction and validation of peptides that bind human prosurvival bcl-2 proteins. PLoS Comput Biol 10:e1003693

    PubMed Central  PubMed  Google Scholar 

  49. Lasi M, Pauly B, Schmidt N, Cikala M, Stiening B, Kasbauer T, Zenner G, Popp T, Wagner A, Knapp RT, Huber AH, Grunert M, Soding J, David CN, Bottger A (2010) The molecular cell death machinery in the simple cnidarian Hydra includes an expanded caspase family and pro- and anti-apoptotic Bcl-2 proteins. Cell Res 20:812–825

    CAS  PubMed  Google Scholar 

  50. Wiens M, Krasko A, Muller CI, Muller WE (2000) Molecular evolution of apoptotic pathways: cloning of key domains from sponges (Bcl-2 homology domains and death domains) and their phylogenetic relationships. J Mol Evol 50:520–531

    CAS  PubMed  Google Scholar 

  51. Rautureau GJ, Yabal M, Yang H, Huang DC, Kvansakul M, Hinds MG (2012) The restricted binding repertoire of Bcl-B leaves Bim as the universal BH3-only prosurvival Bcl-2 protein antagonist. Cell Death Dis 3:e443

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Rautureau GJ, Day CL, Hinds MG (2010) The structure of Boo/Diva reveals a divergent Bcl-2 protein. Proteins 78:2181–2186

    CAS  PubMed  Google Scholar 

  53. Kutuk O, Letai A (2008) Regulation of Bcl-2 family proteins by posttranslational modifications. Curr Mol Med 8:102–118

    CAS  PubMed  Google Scholar 

  54. Rautureau GJ, Day CL, Hinds MG (2010) Intrinsically disordered proteins in bcl-2 regulated apoptosis. Int J Mol Sci 11:1808–1824

    CAS  PubMed Central  PubMed  Google Scholar 

  55. White E, Sabbatini P, Debbas M, Wold WS, Kusher DI, Gooding LR (1992) The 19-kilodalton adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor alpha. Mol Cell Biol 12:2570–2580

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Aoyagi M, Zhai D, Jin C, Aleshin AE, Stec B, Reed JC, Liddington RC (2007) Vaccinia virus N1L protein resembles a B cell lymphoma-2 (Bcl-2) family protein. Protein Sci 16:118–124

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Cooray S, Bahar MW, Abrescia NG, McVey CE, Bartlett NW, Chen RA, Stuart DI, Grimes JM, Smith GL (2007) Functional and structural studies of the vaccinia virus virulence factor N1 reveal a Bcl-2-like anti-apoptotic protein. J Gen Virol 88:1656–1666

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Kvansakul M, van Delft MF, Lee EF, Gulbis JM, Fairlie WD, Huang DC, Colman PM (2007) A structural viral mimic of prosurvival Bcl-2: a pivotal role for sequestering proapoptotic Bax and Bak. Mol Cell 25:933–942

    CAS  PubMed  Google Scholar 

  59. Douglas AE, Corbett KD, Berger JM, McFadden G, Handel TM (2007) Structure of M11L: A myxoma virus structural homolog of the apoptosis inhibitor, Bcl-2. Protein Sci 16:695–703

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Graham SC, Bahar MW, Cooray S, Chen RA, Whalen DM, Abrescia NG, Alderton D, Owens RJ, Stuart DI, Smith GL, Grimes JM (2008) Vaccinia virus proteins A52 and B14 Share a Bcl-2-like fold but have evolved to inhibit NF-kappaB rather than apoptosis. PLoS Pathog 4:e1000128

    PubMed Central  PubMed  Google Scholar 

  61. Henderson S, Huen D, Rowe M, Dawson C, Johnson G, Rickinson A (1993) Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc Natl Acad Sci U S A 90:8479–8483

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Cheng EH, Nicholas J, Bellows DS, Hayward GS, Guo HG, Reitz MS, Hardwick JM (1997) A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc Natl Acad Sci U S A 94:690–694

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Revilla Y, Cebrian A, Baixeras E, Martinez C, Vinuela E, Salas ML (1997) Inhibition of apoptosis by the African swine fever virus Bcl-2 homologue: role of the BH1 domain. Virology 228:400–404

    CAS  PubMed  Google Scholar 

  64. Bratke KA, McLysaght A, Rothenburg S (2013) A survey of host range genes in poxvirus genomes. Infect Genet Evol 14:406–425

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Afonso CL, Tulman ER, Lu Z, Zsak L, Kutish GF, Rock DL (2000) The genome of fowlpox virus. J Virol 74:3815–3831

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Tulman ER, Afonso CL, Lu Z, Zsak L, Kutish GF, Rock DL (2004) The genome of canarypox virus. J Virol 78:353–366

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Virgin HW, Latreille P, Wamsley P, Hallsworth K, Weck KE, DalCanto AJ, Speck SH (1997) Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol 71:5894–5904

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Nava VE, Cheng EH, Veliuona M, Zou S, Clem RJ, Mayer ML, Hardwick JM (1997) Herpesvirus saimiri encodes a functional homolog of the human bcl-2 oncogene. J Virol 71:4118–4122

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Gillet G, Guerin M, Trembleau A, Brun G (1995) A Bcl-2-related gene is activated in avian cells transformed by the Rous sarcoma virus. EMBO J 14:1372–1381

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Haller SL, Peng C, McFadden G, Rothenburg S (2014) Poxviruses and the evolution of host range and virulence. Infect Genet Evol 21:15–40

    CAS  PubMed  Google Scholar 

  71. Westphal D, Ledgerwood EC, Hibma MH, Fleming SB, Whelan EM, Mercer AA (2007) A novel Bcl-2-like inhibitor of apoptosis is encoded by the parapoxvirus ORF virus. J Virol 81:7178–7188

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Banadyga L, Lam SC, Okamoto T, Kvansakul M, Huang DC, Barry M (2011) Deerpox virus encodes an inhibitor of apoptosis that regulates Bak and Bax. J Virol 85:1922–1934

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Okamoto T, Campbell S, Mehta N, Thibault J, Colman PM, Barry M, Huang DC, Kvansakul M (2012) Sheeppox virus SPPV14 encodes a Bcl-2-like cell death inhibitor that counters a distinct set of mammalian proapoptotic proteins. J Virol 86:11501–11511

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Goldmacher VS, Bartle LM, Skaletskaya A, Dionne CA, Kedersha NL, Vater CA, Han JW, Lutz RJ, Watanabe S, Cahir McFarland ED, Kieff ED, Mocarski ES, Chittenden T (1999) A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc Natl Acad Sci U S A 96:12536–12541

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Jurak I, Schumacher U, Simic H, Voigt S, Brune W (2008) Murine cytomegalovirus m38.5 protein inhibits Bax-mediated cell death. J Virol 82:4812–4822

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Fleming P, Kvansakul M, Voigt V, Kile BT, Kluck RM, Huang DC, Degli-Esposti MA, Andoniou CE (2013) MCMV-mediated inhibition of the pro-apoptotic Bak protein is required for optimal in vivo replication. PLoS Pathog 9:e1003192

    PubMed Central  PubMed  Google Scholar 

  77. Hinds MG, Day CL (2005) Regulation of apoptosis: uncovering the binding determinants. Curr Opin Struct Biol 15:690–699

    CAS  PubMed  Google Scholar 

  78. Suzuki M, Youle RJ, Tjandra N (2000) Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103:645–654

    CAS  PubMed  Google Scholar 

  79. Hinds MG, Lackmann M, Skea GL, Harrison PJ, Huang DC, Day CL (2003) The structure of Bcl-w reveals a role for the C-terminal residues in modulating biological activity. EMBO J 22:1497–1507

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW (1993) MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci U S A 90:3516–3520

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Guillemin Y, Cornut-Thibaut A, Gillet G, Penin F, Aouacheria A (2011) Characterization of unique signature sequences in the divergent maternal protein Bcl2l10. Mol Biol Evol 28:3271–3283

    CAS  PubMed  Google Scholar 

  82. Kvansakul M, Wei AH, Fletcher JI, Willis SN, Chen L, Roberts AW, Huang DC, Colman PM (2010) Structural basis for apoptosis inhibition by Epstein-Barr virus BHRF1. PLoS Pathog 6:e1001236

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Kvansakul M, Hinds MG (2014) The Structural Biology of BH3-Only Proteins. Methods Enzymol 544:49–74

    CAS  PubMed  Google Scholar 

  84. Moldoveanu T, Liu Q, Tocilj A, Watson M, Shore G, Gehring K (2006) The X-ray structure of a BAK homodimer reveals an inhibitory zinc binding site. Mol Cell 24:677–688

    CAS  PubMed  Google Scholar 

  85. Ku B, Liang C, Jung JU, Oh BH (2011) Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Cell Res 21:627–641

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Martinez-Senac Mdel M, Corbalan-Garcia S, Gomez-Fernandez JC (2002) The structure of the C-terminal domain of the pro-apoptotic protein Bak and its interaction with model membranes. Biophys J 82:233–243

    PubMed  Google Scholar 

  87. Torrecillas A, Martinez-Senac MM, Ausili A, Corbalan-Garcia S, Gomez-Fernandez JC (2007) Interaction of the C-terminal domain of Bcl-2 family proteins with model membranes. Biochim Biophys Acta 1768:2931–2939

    CAS  PubMed  Google Scholar 

  88. Andreu-Fernandez V, Genoves A, Lee TH, Stellato M, Lucantoni F, Orzaez M, Mingarro I, Aguilar MI, Perez-Paya E (2014) Peptides Derived from the Transmembrane Domain of Bcl-2 Proteins as Potential Mitochondrial Priming Tools. ACS Chem Biol 9:1799–1811

    CAS  PubMed  Google Scholar 

  89. Tatulian SA, Garg P, Nemec KN, Chen B, Khaled AR (2012) Molecular basis for membrane pore formation by Bax protein carboxyl terminus. Biochemistry 51:9406–9419

    CAS  PubMed  Google Scholar 

  90. Garg P, Nemec KN, Khaled AR, Tatulian SA (2013) Transmembrane pore formation by the carboxyl terminus of Bax protein. Biochim Biophys Acta 1828:732–742

    CAS  PubMed  Google Scholar 

  91. Czabotar PE, Westphal D, Dewson G, Ma S, Hockings C, Fairlie WD, Lee EF, Yao S, Robin AY, Smith BJ, Huang DC, Kluck RM, Adams JM, Colman PM (2013) Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Cell 152:519–531

    CAS  PubMed  Google Scholar 

  92. Edlich F, Banerjee S, Suzuki M, Cleland MM, Arnoult D, Wang C, Neutzner A, Tjandra N, Youle RJ (2011) Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. Cell 145:104–116

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Todt F, Cakir Z, Reichenbach F, Youle RJ, Edlich F (2013) The C-terminal helix of Bcl-x(L) mediates Bax retrotranslocation from the mitochondria. Cell Death Differ 20:333–342

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Loh J, Huang Q, Petros AM, Nettesheim D, van Dyk LF, Labrada L, Speck SH, Levine B, Olejniczak ET, Virgin HW (2005) A surface groove essential for viral Bcl-2 function during chronic infection in vivo. PLoS Pathog 1:e10

    PubMed Central  PubMed  Google Scholar 

  95. Desbien AL, Kappler JW, Marrack P (2009) The Epstein-Barr virus Bcl-2 homolog, BHRF1, blocks apoptosis by binding to a limited amount of Bim. Proc Natl Acad Sci U S A 106:5663–5668

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Campbell S, Thibault J, Mehta N, Colman PM, Barry M, Kvansakul M (2014) Structural Insight into BH3 Domain Binding of Vaccinia Virus Antiapoptotic F1L. J Virol 88:8667–8677

    CAS  PubMed  Google Scholar 

  97. Oberstein A, Jeffrey PD, Shi Y (2007) Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J Biol Chem 282:13123–13132

    CAS  PubMed  Google Scholar 

  98. Ku B, Woo JS, Liang C, Lee KH, Hong HS, E X, Kim KS, Jung JU, Oh BH (2008) Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral BCL-2 of murine gamma-herpesvirus 68. PLoS Pathog 4:e25

  99. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    CAS  PubMed  Google Scholar 

  100. Piya S, White EJ, Klein SR, Jiang H, McDonnell TJ, Gomez-Manzano C, Fueyo J (2011) The E1B19K oncoprotein complexes with Beclin 1 to regulate autophagy in adenovirus-infected cells. PLoS ONE 6:e29467

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Hernaez B, Cabezas M, Munoz-Moreno R, Galindo I, Cuesta-Geijo MA, Alonso C (2013) A179L, a new viral Bcl2 homolog targeting Beclin 1 autophagy related protein. Curr Mol Med 13:305–316

    CAS  PubMed  Google Scholar 

  102. Hinds MG, Smits C, Fredericks-Short R, Risk JM, Bailey M, Huang DC, Day CL (2007) Bim, Bad and Bmf: intrinsically unstructured BH3-only proteins that undergo a localized conformational change upon binding to prosurvival Bcl-2 targets. Cell Death Differ 14:128–136

    CAS  PubMed  Google Scholar 

  103. Peng Z, Xue B, Kurgan L, Uversky VN (2013) Resilience of death: intrinsic disorder in proteins involved in the programmed cell death. Cell Death Differ 20:1257–1267

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Day CL, Puthalakath H, Skea G, Strasser A, Barsukov I, Lian LY, Huang DC, Hinds MG (2004) Localization of dynein light chains 1 and 2 and their pro-apoptotic ligands. Biochem J 377:597–605

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Gsponer J, Futschik ME, Teichmann SA, Babu MM (2008) Tight regulation of unstructured proteins: from transcript synthesis to protein degradation. Science 322:1365–1368

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Pang X, Zhang J, Lopez H, Wang Y, Li W, O’Neil KL, Evans JJ, George NM, Long J, Chen Y, Luo X (2014) The Carboxyl-terminal Tail of Noxa Regulates the Stability of Noxa and Mcl-1. J Biol Chem 289:17802–17811

    CAS  PubMed  Google Scholar 

  107. Puthalakath H, Huang DC, O’Reilly LA, King SM, Strasser A (1999) The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 3:287–296

    CAS  PubMed  Google Scholar 

  108. Weatheritt RJ, Gibson TJ (2012) Linear motifs: lost in (pre)translation. Trends Biochem Sci 37:333–341

    CAS  PubMed  Google Scholar 

  109. Rogers JM, Wong CT, Clarke J (2014) Coupled folding and binding of the disordered protein PUMA does not require particular residual structure. J Am Chem Soc 136:5197–5200

    CAS  PubMed Central  PubMed  Google Scholar 

  110. McDonnell JM, Fushman D, Milliman CL, Korsmeyer SJ, Cowburn D (1999) Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists. Cell 96:625–634

    CAS  PubMed  Google Scholar 

  111. Chou JJ, Li H, Salvesen GS, Yuan J, Wagner G (1999) Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell 96:615–624

    CAS  PubMed  Google Scholar 

  112. Yao Y, Bobkov AA, Plesniak LA, Marassi FM (2009) Mapping the interaction of pro-apoptotic tBID with pro-survival BCL-XL. Biochemistry 48:8704–8711

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Wang Y, Tjandra N (2013) Structural insights of tBid, the caspase-8-activated Bid, and its BH3 domain. J Biol Chem 288:35840–35851

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR, Newmeyer DD (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17:525–535

    CAS  PubMed  Google Scholar 

  115. Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S, Armstrong SA, Letai A (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9:351–365

    CAS  PubMed  Google Scholar 

  116. Gavathiotis E, Suzuki M, Davis ML, Pitter K, Bird GH, Katz SG, Tu HC, Kim H, Cheng EH, Tjandra N, Walensky LD (2008) BAX activation is initiated at a novel interaction site. Nature 455:1076–1081

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Leshchiner ES, Braun CR, Bird GH, Walensky LD (2013) Direct activation of full-length proapoptotic BAK. Proc Natl Acad Sci U S A 110:986–995

    Google Scholar 

  118. Wilfling F, Weber A, Potthoff S, Vogtle FN, Meisinger C, Paschen SA, Hacker G (2012) BH3-only proteins are tail-anchored in the outer mitochondrial membrane and can initiate the activation of Bax. Cell Death Differ 19:1328–1336

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Sarosiek KA, Chi X, Bachman JA, Sims JJ, Montero J, Patel L, Flanagan A, Andrews DW, Sorger P, Letai A (2013) BID Preferentially Activates BAK while BIM Preferentially Activates BAX, Affecting Chemotherapy Response. Mol Cell 51:751–765

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Ma S, Hockings C, Anwari K, Kratina T, Fennell S, Lazarou M, Ryan MT, Kluck RM, Dewson G (2013) Assembly of the Bak apoptotic pore: a critical role for the Bak protein alpha6 helix in the multimerization of homodimers during apoptosis. J Biol Chem 288:26027–26038

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Dai H, Pang YP, Ramirez-Alvarado M, Kaufmann SH (2014) Evaluation of the BH3-only protein Puma as a direct Bak activator. J Biol Chem 289:89–99

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Merino D, Giam M, Hughes PD, Siggs OM, Heger K, O’Reilly LA, Adams JM, Strasser A, Lee EF, Fairlie WD, Bouillet P (2009) The role of BH3-only protein Bim extends beyond inhibiting Bcl-2-like prosurvival proteins. J Cell Biol 186:355–362

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Du H, Wolf J, Schafer B, Moldoveanu T, Chipuk JE, Kuwana T (2011) BH3 domains other than Bim and Bid can directly activate Bax/Bak. J Biol Chem 286:491–501

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Dai H, Smith A, Meng XW, Schneider PA, Pang YP, Kaufmann SH (2011) Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization. J Cell Biol 194:39–48

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Westphal D, Kluck RM, Dewson G (2014) Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ 21:196–205

    CAS  PubMed  Google Scholar 

  126. Bartlett N, Symons JA, Tscharke DC, Smith GL (2002) The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence. J Gen Virol 83:1965–1976

    CAS  PubMed  Google Scholar 

  127. de Motes CM, Cooray S, Ren H, Almeida GM, McGourty K, Bahar MW, Stuart DI, Grimes JM, Graham SC, Smith GL (2011) Inhibition of apoptosis and NF-kappaB activation by vaccinia protein N1 occur via distinct binding surfaces and make different contributions to virulence. PLoS Pathog 7:e1002430

    Google Scholar 

  128. Benfield CT, Mansur DS, McCoy LE, Ferguson BJ, Bahar MW, Oldring AP, Grimes JM, Stuart DI, Graham SC, Smith GL (2011) Mapping the IkappaB kinase beta (IKKbeta)-binding interface of the B14 protein, a vaccinia virus inhibitor of IKKbeta-mediated activation of nuclear factor kappaB. J Biol Chem 286:20727–20735

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Kalverda AP, Thompson GS, Vogel A, Schroder M, Bowie AG, Khan AR, Homans SW (2009) Poxvirus K7 protein adopts a Bcl-2 fold: biochemical mapping of its interactions with human DEAD box RNA helicase DDX3. J Mol Biol 385:843–853

    CAS  PubMed  Google Scholar 

  130. Oda S, Schroder M, Khan AR (2009) Structural basis for targeting of human RNA helicase DDX3 by poxvirus protein K7. Structure 17:1528–1537

    CAS  PubMed  Google Scholar 

  131. Zhai D, Yu E, Jin C, Welsh K, Shiau CW, Chen L, Salvesen GS, Liddington R, Reed JC (2010) Vaccinia virus protein F1L is a caspase-9 inhibitor. J Biol Chem 285:5569–5580

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Gerlic M, Faustin B, Postigo A, Yu EC, Proell M, Gombosuren N, Krajewska M, Flynn R, Croft M, Way M, Satterthwait A, Liddington RC, Salek-Ardakani S, Matsuzawa S, Reed JC (2013) Vaccinia virus F1L protein promotes virulence by inhibiting inflammasome activation. Proc Natl Acad Sci U S A 110:7808–7813

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Ng KP, Hillmer AM, Chuah CT, Juan WC, Ko TK, Teo AS, Ariyaratne PN, Takahashi N, Sawada K, Fei Y, Soh S, Lee WH, Huang JW, Allen JC Jr, Woo XY, Nagarajan N, Kumar V, Thalamuthu A, Poh WT, Ang AL, Mya HT, How GF, Yang LY, Koh LP, Chowbay B, Chang CT, Nadarajan VS, Chng WJ, Than H, Lim LC, Goh YT, Zhang S, Poh D, Tan P, Seet JE, Ang MK, Chau NM, Ng QS, Tan DS, Soda M, Isobe K, Nothen MM, Wong TY, Shahab A, Ruan X, Cacheux-Rataboul V, Sung WK, Tan EH, Yatabe Y, Mano H, Soo RA, Chin TM, Lim WT, Ruan Y, Ong ST (2012) A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med 18:521–528

    CAS  PubMed  Google Scholar 

  134. Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC, Perucho M (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275:967–969

    CAS  PubMed  Google Scholar 

  135. Wan L, Tan M, Yang J, Inuzuka H, Dai X, Wu T, Liu J, Shaik S, Chen G, Deng J, Malumbres M, Letai A, Kirschner MW, Sun Y, Wei W (2014) APC(Cdc20) suppresses apoptosis through targeting Bim for ubiquitination and destruction. Dev Cell 29:377–391

    CAS  PubMed  Google Scholar 

  136. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681

    CAS  PubMed  Google Scholar 

  137. Bruncko M, Oost TK, Belli BA, Ding H, Joseph MK, Kunzer A, Martineau D, McClellan WJ, Mitten M, Ng SC, Nimmer PM, Oltersdorf T, Park CM, Petros AM, Shoemaker AR, Song X, Wang X, Wendt MD, Zhang H, Fesik SW, Rosenberg SH, Elmore SW (2007) Studies leading to potent, dual inhibitors of Bcl-2 and Bcl-xL. J Med Chem 50:641–662

    CAS  PubMed  Google Scholar 

  138. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, Dayton BD, Ding H, Enschede SH, Fairbrother WJ, Huang DC, Hymowitz SG, Jin S, Khaw SL, Kovar PJ, Lam LT, Lee J, Maecker HL, Marsh KC, Mason KD, Mitten MJ, Nimmer PM, Oleksijew A, Park CH, Park CM, Phillips DC, Roberts AW, Sampath D, Seymour JF, Smith ML, Sullivan GM, Tahir SK, Tse C, Wendt MD, Xiao Y, Xue JC, Zhang H, Humerickhouse RA, Rosenberg SH, Elmore SW (2013) ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 19:202–208

    CAS  PubMed  Google Scholar 

  139. Walensky LD, Kung AL, Escher I, Malia TJ, Barbuto S, Wright RD, Wagner G, Verdine GL, Korsmeyer SJ (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305:1466–1470

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Petros AM, Olejniczak ET, Fesik SW (2004) Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta 1644:83–94

    CAS  PubMed  Google Scholar 

  141. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534

    CAS  PubMed  Google Scholar 

  142. Petros AM, Dinges J, Augeri DJ, Baumeister SA, Betebenner DA, Bures MG, Elmore SW, Hajduk PJ, Joseph MK, Landis SK, Nettesheim DG, Rosenberg SH, Shen W, Thomas S, Wang X, Zanze I, Zhang H, Fesik SW (2006) Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis. J Med Chem 49:656–663

    CAS  PubMed  Google Scholar 

  143. Lee EF, Czabotar PE, Smith BJ, Deshayes K, Zobel K, Colman PM, Fairlie WD (2007) Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family. Cell Death Differ 14:1711–1713

    CAS  PubMed  Google Scholar 

  144. Merino D, Khaw SL, Glaser SP, Anderson DJ, Belmont LD, Wong C, Yue P, Robati M, Phipson B, Fairlie WD, Lee EF, Campbell KJ, Vandenberg CJ, Cory S, Roberts AW, Ludlam MJ, Huang DC, Bouillet P (2012) Bcl-2, Bcl-x(L), and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells. Blood 119:5807–5816

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Stewart ML, Fire E, Keating AE, Walensky LD (2010) The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat Chem Biol 6:595–601

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Petros AM, Swann SL, Song D, Swinger K, Park C, Zhang H, Wendt MD, Kunzer AR, Souers AJ, Sun C (2014) Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein. Bioorg Med Chem Lett 24:1484–1488

    CAS  PubMed  Google Scholar 

  147. Cluzeau T, Robert G, Mounier N, Karsenti JM, Dufies M, Puissant A, Jacquel A, Renneville A, Preudhomme C, Cassuto JP, Raynaud S, Luciano F, Auberger P (2012) BCL2L10 is a predictive factor for resistance to azacitidine in MDS and AML patients. Oncotarget 3:490–501

    PubMed Central  PubMed  Google Scholar 

  148. Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, Ellis S, Kelly PN, Ekert PG, Metcalf D, Roberts AW, Huang DC, Kile BT (2007) Programmed anuclear cell death delimits platelet life span. Cell 128:1173–1186

    CAS  PubMed  Google Scholar 

  149. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, Johnson EF, Marsh KC, Mitten MJ, Nimmer P, Roberts L, Tahir SK, Xiao Y, Yang X, Zhang H, Fesik S, Rosenberg SH, Elmore SW (2008) ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68:3421–3428

    CAS  PubMed  Google Scholar 

  150. Mesri EA, Feitelson MA, Munger K (2014) Human viral oncogenesis: a cancer hallmarks analysis. Cell Host Microbe 15:266–282

    CAS  PubMed  Google Scholar 

  151. Thompson MP, Kurzrock R (2004) Epstein-Barr virus and cancer. Clin Cancer Res 10:803–821

    CAS  PubMed  Google Scholar 

  152. Parkin DM (2006) The global health burden of infection-associated cancers in the year 2002. Int J Cancer 118:3030–3044

    CAS  PubMed  Google Scholar 

  153. Kelly GL, Long HM, Stylianou J, Thomas WA, Leese A, Bell AI, Bornkamm GW, Mautner J, Rickinson AB, Rowe M (2009) An Epstein-Barr virus anti-apoptotic protein constitutively expressed in transformed cells and implicated in burkitt lymphomagenesis: the Wp/BHRF1 link. PLoS Pathog 5:e1000341

    PubMed Central  PubMed  Google Scholar 

  154. Procko E, Berguig GY, Shen BW, Song Y, Frayo S, Convertine AJ, Margineantu D, Booth G, Correia BE, Cheng Y, Schief WR, Hockenbery DM, Press OW, Stoddard BL, Stayton PS, Baker D (2014) A computationally designed inhibitor of an Epstein-Barr viral Bcl-2 protein induces apoptosis in infected cells. Cell 157:1644–1656

    CAS  PubMed  Google Scholar 

  155. Caria S, Chugh S, Nhu D, Lessene G, Kvansakul M (2012) Crystallization and preliminary X-ray characterization of Epstein-Barr virus BHRF1 in complex with a benzoylurea peptidomimetic. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 68:1521–1524

    CAS  Google Scholar 

  156. Cheltsov AV, Aoyagi M, Aleshin A, Yu EC, Gilliland T, Zhai D, Bobkov AA, Reed JC, Liddington RC, Abagyan R (2010) Vaccinia virus virulence factor N1L is a novel promising target for antiviral therapeutic intervention. J Med Chem 53:3899–3906

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Su M, Mei Y, Sanishvili R, Levine B, Colbert CL, Sinha S (2014) Targeting gamma-herpesvirus 68 Bcl-2-mediated down-regulation of autophagy. J Biol Chem 289:8029–8040

    CAS  PubMed  Google Scholar 

  158. Abdelwahid E, Rolland S, Teng X, Conradt B, Hardwick JM, White K (2011) Mitochondrial involvement in cell death of non-mammalian eukaryotes. Biochim Biophys Acta 1813:597–607

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Doumanis J, Dorstyn L, Kumar S (2007) Molecular determinants of the subcellular localization of the Drosophila Bcl-2 homologues DEBCL and BUFFY. Cell Death Differ 14:907–915

    CAS  PubMed  Google Scholar 

  160. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    CAS  PubMed  Google Scholar 

  161. Dewson G, Kratina T, Czabotar P, Day CL, Adams JM, Kluck RM (2009) Bak activation for apoptosis involves oligomerization of dimers via their alpha6 helices. Mol Cell 36:696–703

    CAS  PubMed  Google Scholar 

  162. Dewson G, Kratina T, Sim HW, Puthalakath H, Adams JM, Colman PM, Kluck RM (2008) To trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3:groove interactions. Mol Cell 30:369–380

    CAS  PubMed  Google Scholar 

  163. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    CAS  PubMed  Google Scholar 

  164. Liu X, Dai S, Zhu Y, Marrack P, Kappler JW (2003) The structure of a Bcl-xL/Bim fragment complex: implications for Bim function. Immunity 19:341–352

    CAS  PubMed  Google Scholar 

  165. Hasegawa H, Holm L (2009) Advances and pitfalls of protein structural alignment. Curr Opin Struct Biol 19:341–348

    CAS  PubMed  Google Scholar 

  166. Woo JS, Jung JS, Ha NC, Shin J, Kim KH, Lee W, Oh BH (2003) Unique structural features of a BCL-2 family protein CED-9 and biophysical characterization of CED-9/EGL-1 interactions. Cell Death Differ 10:1310–1319

    CAS  PubMed  Google Scholar 

  167. DeLano WL (2004) Use of PYMOL as a communications tool for molecular science. Abstracts of Papers of the American Chemical Society 228:U313–U314

    Google Scholar 

Download references

Acknowledgments

Our research is supported by the National Health and Medical Research Council of Australia (Project APP1007918 to MK) and the Australian Research Council of Australia (Fellowship FT130101349 to MK).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marc Kvansakul or Mark G. Hinds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kvansakul, M., Hinds, M.G. The Bcl-2 family: structures, interactions and targets for drug discovery. Apoptosis 20, 136–150 (2015). https://doi.org/10.1007/s10495-014-1051-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1051-7

Keywords

Navigation