Skip to main content

Advertisement

Log in

Urokinase-type plasminogen activator receptor regulates apoptotic sensitivity of colon cancer HCT116 cell line to TRAIL via JNK-p53 pathway

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The urokinase-type plasminogen activator receptor (uPAR) serves not only as an anchor for urokinase-type plasminogen activator but also participates in intracellular signal transduction events. In this study, we investigated whether uPAR could modulate TRAIL-induced apoptosis in human colon cancer cells HCT116. Using an antisense strategy, we established a stable HCT116 cell line with down-regulated uPAR. The sensitivity to TRAIL-induced apoptosis was evaluated by FACS analysis. Our results show that the inhibition of uPAR could sensitize HCT116 to TRAIL-induced apoptosis. uPAR inhibition changed the expression of mitochondrial apoptotic pathway proteins, including Bcl-2, Bax, Bid and p53, in a pro-apoptotic manner. We also found that the inhibition of uPAR down-regulated the phosphorylation of FAK, ERK and JNK. The inhibition of p53 by RNA interference rescued cells from enhanced apoptosis, thus indicating that p53 is critical for enhancing TRAIL-induced apoptosis. Furthermore, JNK, but not ERK, inhibition involved in the up-regulation of p53. JNK negatively regulated p53 protein level. Overall, our results show that uPAR inhibition can sensitize colon cancer cells HCT116 to TRAIL-induced apoptosis via active p53 and mitochondrial apoptotic pathways that JNK inhibition is involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

uPAR:

Urokinase-type plasminogen activator receptor

uPA:

Urokinase-type plasminogen activator

AS:

Antisense

TRAIL:

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand

DR4:

Death receptor 4

DR5:

Death receptor 5

ECM:

Extracellular matrix

FAK:

Focal adhesion kinase

ERK:

Extracellular signal-regulated kinases

JNK:

Jun N-terminal kinase

Bcl-2:

B cell lymphoma 2

References

  1. Almasi CE, Christensen IJ, Høyer-Hansen G, Danø K, Pappot H, Dienemann H, Muley T (2001) Urokinase receptor forms in serum from non-small cell lung cancer patients: Relation to prognosis. Lung Cancer 74(3):510–515

    Article  Google Scholar 

  2. Sorio C, Mafficini A, Furlan F, Barbi S, Bonora A, Brocco G, Blasi F, Talamini G, Bassi C, Scarpa A (2011) Elevated urinary levels of urokinase-type plasminogen activator receptor (uPAR) in pancreatic ductal adenocarcinoma identify a clinically high-risk group. BMC Cancer 11:448

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Pedersen H, Brünner N, Francis D, Osterlind K, Rønne E, Hansen HH, Danø K, Grøndahl-Hansen J (1994) Prognostic impact of urokinase, urokinase receptor, and type 1 plasminogen activator inhibitor in squamous and large cell lung cancer tissue. Cancer Res 54(17):4671–4675

    PubMed  CAS  Google Scholar 

  4. de Vries TJ, van Muijen GN, Ruiter DJ (1996) The plasminogen activation system in tumour invasion and metastasis. Pathol Res Pract 192(7):718–733

    Article  PubMed  Google Scholar 

  5. Smith HW, Marshall CJ (2010) Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 11(1):23–36

    Article  PubMed  CAS  Google Scholar 

  6. Resnati M, Pallavicini I, Wang JM, Oppenheim J, Serhan CN, Romano M, Blasi F (2002) The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1LXA4R. Proc Natl Acad Sci USA 99(3):1359–1364

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Tang CH, Wei Y (2008) The urokinase receptor and integrins in cancer progression. Cell Mol Life Sci 65(7):1916–1932

    Article  PubMed  CAS  Google Scholar 

  8. Franco P, Vocca I, Carriero MV, Alfano D, Cito L, Longanesi-Cattani I, Grieco P, Ossowski L, Stoppelli MP (2006) Activation of urokinase receptor by a novel interaction between the connecting peptide region of urokinase and alpha v beta 5 integrin. J Cell Sci 119(16):3424–3434

    Article  PubMed  CAS  Google Scholar 

  9. Kugler MC, Wei Y, Chapman HA (2003) Urokinase receptor and integrin interactions. Curr Pharm Des 9(19):1565–1574

    Article  PubMed  CAS  Google Scholar 

  10. Cavallo-Medved D, Dosescu J, Linebaugh BE, Sameni M, Rudy D, Sloane BF (2003) Mutant K-ras regulates cathepsin B localization on the surface of human colorectal carcinoma cells. Neoplasia 5(6):507–519

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Kotipatruni RR, Nalla AK, Asuthkar S, Gondi CS, Dinh DH, Rao JS (2012) Apoptosis induced by knockdown of uPAR and MMP-9 is mediated by inactivation of EGFR/STAT3 signaling in medulloblastoma. PLoS ONE 7(9):e44798

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gondi CS, Kandhukuri N, Dinh DH, Gujrati M, Rao JS (2007) Down-regulation of uPAR and uPA activates caspase-mediated apoptosis and inhibits the PI3K/AKT pathway. Int J Oncol 31(1):19–27

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Gopinath S, Malla RR, Gondi CS, Alapati K, Fassett D, Klopfenstein JD, Dinh DH, Gujrati M, Rao JS (2010) Co-depletion of cathepsin B and uPAR induces G0/G1 arrest in glioma via FOXO3a mediated p27Kip1 upregulation. PLoS ONE 5(7):e11668

    Article  PubMed  PubMed Central  Google Scholar 

  14. Smith CA, Ferrah T, Goodwin RG (1995) The TNF receptor superfamily of cellular and viral proteins: activation costimulation and death. Cell 76:959–962

    Article  Google Scholar 

  15. Srivastava RK (2001) TRAIL/Apo-2L: mechanisms and clinical applications in cancer. Neoplasia 3(6):535–546

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Suliman A, Lam A, Datta R, Srivastava RK (2001) Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and independent pathways. Oncogene 20(17):2122–2133

    Article  PubMed  CAS  Google Scholar 

  17. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13(15):1899–1911

    Article  PubMed  CAS  Google Scholar 

  18. Schug ZT, Gonzalvez F, Houtkooper RH, Vaz FM, Gottlieb E (2011) BID is cleaved by caspase-8 within a native complex on the mitochondrial membrane. Cell Death Differ 18(3):538–548

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87(1):99–163

    Article  PubMed  CAS  Google Scholar 

  20. Park EJ, Choi KS, Yoo YH, Kwon TK (2013) Nutlin-3, a small-molecule MDM2 inhibitor, sensitizes caki cells to TRAIL-induced apoptosis through p53-mediated PUMA upregulation and ROS-mediated DR5 upregulation. Anticancer Drugs 24(3):260–269

    Article  PubMed  CAS  Google Scholar 

  21. Kim JY, Kim EH, Kim SU, Kwon TK, Choi KS (2010) Capsaicin sensitizes malignant glioma cells to TRAIL-mediated apoptosis via DR5 upregulation and survivin downregulation. Carcinogenesis 31(3):367–375

    Article  PubMed  CAS  Google Scholar 

  22. Moon DO, Asami Y, Long H, Jang JH, Bae EY, Kim BY, Choi YH, Kang CH, Ahn JS, Kim GY (2013) Verrucarin A sensitizes TRAIL-induced apoptosis via the upregulation of DR5 in an eIF2α/CHOP-dependent manner. Toxicol In Vitro 27(1):257–263

    Article  PubMed  CAS  Google Scholar 

  23. Kim HB, Kim MJ, Lee SH, Lee JW, Bae JH, Kim DW, Dao TT, Oh WK, Kang CD, Kim SH (2012) Amurensin G, a novel SIRT1 inhibitor, sensitizes TRAIL-resistant human leukemic K562 cells to TRAIL-induced apoptosis. Biochem Pharmacol 84(3):402–410

    Article  PubMed  CAS  Google Scholar 

  24. Shin SW, Park JW (2013) Ursolic acid sensitizes prostate cancer cells to TRAIL-mediated apoptosis. Biochim Biophys Acta 1833(3):723–730

    Article  PubMed  CAS  Google Scholar 

  25. Kim K, Nakagawa H, Fei P, Rustgi AK, El-Deiry WS (2004) Targeting Bcl-xL in esophageal squamous cancer to sensitize to chemotherapy plus TRAIL-induced apoptosis while normal epithelial cells are protected by blockade of caspase 9. Cell Death Differ 11(5):583–587

    Article  PubMed  CAS  Google Scholar 

  26. Ray S, Bucur O, Almasan A (2005) Sensitization of prostate carcinoma cells to Apo2L/TRAIL by a Bcl-2 family protein inhibitor. Apoptosis 10(6):1411–1418

    Article  PubMed  CAS  Google Scholar 

  27. Zhao J, Lu Y, Shen HM (2012) Targeting p53 as a therapeutic strategy in sensitizing TRAIL-induced apoptosis in cancer cells. Cancer Lett 314(1):8–23

    Article  PubMed  CAS  Google Scholar 

  28. Rieger J, Naumann U, Glaser T, Ashkenazi A, Weller M (1998) APO2 ligand: a novel lethal weapon against malignant glioma. FEBS Lett 427(1):124–128

    Article  PubMed  CAS  Google Scholar 

  29. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science (Washington, DC) 281(5381):1305–1308

    CAS  Google Scholar 

  30. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303(5660):1010–1014

    Article  PubMed  CAS  Google Scholar 

  31. Cheng J, Cui R, Chen CH, Du J (2007) Oxidized low-density lipoprotein stimulates p53-dependent activation of proapoptotic Bax leading to apoptosis of differentiated endothelial progenitor cells. Endocrinology 148(5):2085–2094

    Article  PubMed  CAS  Google Scholar 

  32. Yamaguchi H, Chen J, Bhalla K, Wang HG (2004) Regulation of Bax activation and apoptotic response to microtubule-damaging agents by p53 transcription dependent and independent pathways. J Biol Chem 279(38):39431–39437

    Article  PubMed  CAS  Google Scholar 

  33. Liu X, Yue P, Khuri FR, Sun SY (2004) p53 Upregulates death receptor 4 expression through an intronic p53 binding site. Cancer Res 64(20):5078–5083

    Article  PubMed  CAS  Google Scholar 

  34. Zhuang H, Jiang W, Zhang X, Qiu F, Gan Z, Cheng W, Zhang J, Guan S, Tang B, Huang Q, Wu X, Huang X, Jiang W, Hu Q, Lu M, Hua ZC (2013) Suppression of HSP70 expression sensitizes NSCLC cell lines to TRAIL-induced apoptosis by upregulating DR4 and DR5 and downregulating c-FLIP-L expressions. J Mol Med 91(2):219–235

    Article  PubMed  CAS  Google Scholar 

  35. Srsen V, Gnadt N, Dammermann A, Merdes A (2006) Inhibition of centrosome protein assembly leads to p53-dependent exit from the cell cycle. J Cell Biol 174(5):625–630

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Tsujimoto Y (2002) Bcl-2 family of proteins: life-or-death switch in mitochondria. Biosci Rep 22(1):47–58

    Article  PubMed  CAS  Google Scholar 

  37. D’Alessio S, Gerasi L, Blasi F (2008) uPAR-deficient mouse keratinocytes fail to produce EGFR-dependent laminin-5, affecting migration in vivo and in vitro. J Cell Sci 121(Pt 23):3922–3932

    Article  PubMed  Google Scholar 

  38. Margheri F, D’Alessio S, Serratí S, Pucci M, Annunziato F, Cosmi L, Liotta F, Angeli R, Angelucci A, Gravina GL, Rucci N, Bologna M, Teti A, Monia B, Fibbi G, Del Rosso M (2005) Effects of blocking urokinase receptor signaling by antisense oligonucleotides in a mouse model of experimental prostate cancer bone metastase. Gene Ther 12(8):702–714

    Article  PubMed  CAS  Google Scholar 

  39. Lin A, Dibling B (2002) The true face of JNK activation in apoptosis. Aging Cell 1(2):112–116

    Article  PubMed  CAS  Google Scholar 

  40. Nalla AK, Asuthkar S, Bhoopathi P, Gujrati M, Dinh DH, Rao JS (2010) Suppression of uPAR retards radiation-induced invasion and migration mediated by integrin β1/FAK signaling in medulloblastoma. PLoS ONE 5(9):e13006

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kin Y, Chintala SK, Go Y, Sawaya R, Mohanam S, Kyritsis AP, Rao JS (2000) A novel role for the urokinase-type plasminogen activator receptor in apoptosis of malignant gliomas. Int J Oncol 17(1):61–65

    PubMed  CAS  Google Scholar 

  42. Hildenbrand R, Gandhari M, Stroebel P, Marx A, Allgayer H, Arens N (2008) The urokinase system role of cell proliferation and apoptosis. Histol Histopathol 23(2):227–236

    PubMed  CAS  Google Scholar 

  43. Besch R, Berking C, Kammerbauer C, Degitz K (2007) Inhibition of urokinase-type plasminogen activator receptor induces apoptosis in melanoma cells by activation of p53. Cell Death Differ 14(4):818–829

    Article  PubMed  CAS  Google Scholar 

  44. Prager GW, Breuss JM, Steurer S, Olcaydu D, Mihaly J, Brunner PM, Stockinger H, Binder BR (2004) Vascular endothelial growth factor receptor-2-induced initial endothelial cell. Migration depends on the presence of the urokinase receptor. Circ Res 94(12):1562–1570

    Article  PubMed  CAS  Google Scholar 

  45. Cortese K, Sahores M, Madsen CD, Tacchetti C, Blasi F (2008) Clathrin and LRP-1-independent constitutive endocytosis and recycling of uPAR. PLoS ONE 3(11):e3730

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xiaowen H, Yi S (2012) Triptolide sensitizes TRAIL-induced apoptosis in prostate cancer cells via p53-mediated DR5 up-regulation. Mol Biol Rep 39(9):8763–8770

    Article  PubMed  Google Scholar 

  47. Lan YH, Chiang JH, Huang WW, Lu CC, Chung JG, Wu TS, Jhan JH, Lin KL, Pai SJ, Chiu YJ, Tsuzuki M, Yang JS (2012) Activations of both extrinsic and intrinsic pathways in HCT 116 human colorectal cancer cells contribute to apoptosis through p53-mediated ATM/Fas signaling by emilia sonchifolia extract, a folklore medicinal plant. Evid Based Complement Altern Med 2012:178

    Article  Google Scholar 

  48. Takimoto R, El-Deiry WS (2000) Wild-type p53 transactivates the KILLER/DR5 gene through an intronic sequence-specific DNA-binding site. Oncogene 19(14):1735–1743

    Article  PubMed  CAS  Google Scholar 

  49. Guan B, Yue P, Clayman GL, Sun SY (2001) Evidence that the death receptor DR4 is a DNA damage-inducible, p53-regulated gene. J Cell Physiol 188(1):98–105

    Article  PubMed  CAS  Google Scholar 

  50. Shetty S, Velusamy T, Idell S, Shetty P, Mazar AP, Bhandary YP, Shetty RS (2007) Regulation of urokinase receptor expression by p53: novel role in stabilization of uPAR mRNA. Mol Cell Biol 27(16):5607–5618

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Pulukuri SM, Gondi CS, Lakka SS, Jutla A, Estes N, Gujrati M, Rao JS (2005) RNA interference-directed knockdown of urokinase plasminogen activator receptor inhibits MMPs expression via dephosphorylation of Erk1/2 and Stat3 in AM. J Biol Chem 280(43):36529–36540

    Article  PubMed  CAS  Google Scholar 

  52. Malla RR, Gopinath S, Alapati K, Gorantla B, Gondi CS, Rao JS (2012) uPAR and cathepsin B inhibition enhanced radiation-induced apoptosis in glioma initiating cells. Neuro Oncol 14(6):745–760

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Das M, Jiang F, Sluss HK, Zhang C, Shokat KM, Flavell RA, Davis RJ (2007) Suppression of p53-dependent senescence by the JNK signal transduction pathway. Proc Natl Acad Sci USA 104(40):15759–15764

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Fuchs SY, Adler V, Buschmann T, Yin Z, Wu X, Jones SN, Ronai Z (1998) JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes Dev 12(17):2658–2663

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Rahman M, Zhang Z, Mody AA, Su DM, Das HK (2012) Intraperitoneal injection of JNK-specific inhibitor SP600125 inhibits the expression of presenilin-1 and Notch signaling in mouse brain without induction of apoptosis. Brain Res 1448:117–128

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Saha MN, Jiang H, Yang Y, Zhu X, Wang X, Schimmer AD, Qiu L, Chang H (2012) Targeting p53 via JNK pathway: a novel role of RITA for apoptotic signaling in multiple myeloma. PLoS ONE 7(1):e30215

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to grants from the Ministry of Science and Technology (2012CB967004, 2014CB744501, 2012AA020304 and 2012ZX09401012), the Chinese National Natural Sciences Foundation (81121062, 31200572, 31070706 and 31071196), the Jiangsu Provincial Nature Science Foundation (BE2013630 and BZ2012050), the Bureau of Science and Technology of Changzhou, Jiangsu, China (CZ20130011, CE20135013, CZ20120004, CM20122003 and WF201207).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao Wang or Zi-Chun Hua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Qiu, F., Liu, Z. et al. Urokinase-type plasminogen activator receptor regulates apoptotic sensitivity of colon cancer HCT116 cell line to TRAIL via JNK-p53 pathway. Apoptosis 19, 1532–1544 (2014). https://doi.org/10.1007/s10495-014-1025-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1025-9

Keywords

Navigation