Skip to main content

Advertisement

Log in

Rac1 signaling protects monocytic AML cells expressing the MLL-AF9 oncogene from caspase-mediated apoptotic death

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

We investigated the relevance of signaling mechanisms regulated by the Ras-homologous GTPase Rac1 for survival of acute myeloid leukemia (AML) cells harbouring the MLL-AF9 oncogene due to t(9;11)(p21;q23) translocation. Monocytic MLL-AF9 expressing cells (MM6, THP-1) were hypersensitive to both small-molecule inhibitors targeting Rac1 (EHT 1864, NSC 23766) (IC50EHT ~12.5 μM) and lipid lowering drugs (lovastatin, atorvastatin) (IC50Lova ~7.5 μM) as compared to acute myelocytic leukemia (NOMO-1, HL60) and T cell leukemia (Jurkat) cells (IC50EHT >30 μM; IC50Lova >25 μM). Hypersensitivity of monocytic cells following Rac1 inhibition resulted from caspase-driven apoptosis as shown by profound activation of caspase-8,-9,-7,-3 and substantial (~90 %) decrease in protein expression of pro-survival factors (survivin, XIAP, p-Akt). Apoptotic death was preceded by S139-posphorylation of histone H2AX (γH2AX), a prototypical surrogate marker of DNA double-strand breaks (DSBs). Taken together, abrogation of Rac1 signaling causes DSBs in acute monocytic leukemia cells harbouring the MLL-AF9 oncogene, which, together with downregulation of survivin, XIAP and p-Akt, results in massive induction of caspase-driven apoptotic death. Apparently, Rac1 signaling is required for maintaining genetic stability and maintaining survival in specific subtypes of AML. Hence, targeting of Rac1 is considered a promising novel strategy to induce lethality in MLL-AF9 expressing AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Akt:

Protein kinase B

ALL:

Acute lymphoblastic leukemia

AML:

Acute myeloid leukemia

ATM:

Ataxia telangiectasia mutated

ATR:

ATM and Rad3-related

BER:

Base excision repair

BRCA:

Breast cancer susceptibility protein

Chk:

Checkpoint kinase

CRIB:

Cdc42/Rac interactive binding region

DDR:

DNA damage response

DSBs:

DNA double-strand breaks

GEF:

Guanine exchange factor

IC50 :

Inhibitory concentration 50 %

EMT:

Epithelial-to-mesenchymal transition

HMG-CoA:

3-Hydroxy-3-methyl-glutaryl coenzyme A

H2AX:

Histone H2AX

γH2AX:

S139 phosphorylated H2AX

IC50 :

Inhibitory concentration 50 %

IC50EHT :

IC50 after EHT 1864 treatment

IC50Lova :

IC50 after lovastatin treatment

MLL:

Mixed lineage leukemia

MLLT3 (=AF9):

Mixed lineage leukemia, tanslocated to, 3

PARP:

Poly (ADP-ribose) polymerase

Rac1:

Ras-related C3 botulinum substrate 1

Rho:

Ras-homologous

XIAP:

X-linked inhibitor of apoptosis

References

  1. Bokoch GM (2000) Regulation of cell function by Rho family GTPases. Immunol Res 21:139–148

    Article  PubMed  CAS  Google Scholar 

  2. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  PubMed  CAS  Google Scholar 

  3. Villalonga P, Ridley AJ (2006) Rho GTPases and cell cycle control. Growth Factors 24(3):159–164

    Article  PubMed  CAS  Google Scholar 

  4. Coniglio SJ, Jou TS, Symons M (2001) Rac1 protects epithelial cells against anoikis. J Biol Chem 276:28113–28120

    Article  PubMed  CAS  Google Scholar 

  5. Minden A, Lin A, Claret FX, Abo A, Karin M (1995) Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81:1147–1157

    Article  PubMed  CAS  Google Scholar 

  6. Coso OA, Chiariello M, Yu JC, Teramoto H, Crespo P, Xu N et al (1995) The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81:1137–1146

    Article  PubMed  CAS  Google Scholar 

  7. Canman CE, Kastan MB (1996) Three paths to stress relief. Nature 384:213–214

    Article  PubMed  CAS  Google Scholar 

  8. Schmitz AA, Govek EE, Bottner B, Van Aelst L (2000) Rho GTPases: signaling, migration, and invasion. Exp Cell Res 261:1–12

    Article  PubMed  CAS  Google Scholar 

  9. Aznar S, Fernandez-Valeron P, Espina C, Lacal JC (2004) Rho GTPases: potential candidates for anticancer therapy. Cancer Lett 206:181–191

    Article  PubMed  CAS  Google Scholar 

  10. Ellenbroek SI, Collard JG (2007) Rho GTPases: functions and association with cancer. Clin Exp Metastasis 24:657–672

    Article  PubMed  CAS  Google Scholar 

  11. Liao JK, Laufs U (2005) Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45:89–118

    Article  PubMed  CAS  Google Scholar 

  12. Zhou Q, Liao JK (2010) Pleiotropic effects of statins—Basic research and clinical perspectives. Circ J 74:818–826

    Article  PubMed  CAS  Google Scholar 

  13. Rao S, Lowe M, Herliczek TW, Keyomarsi K (1998) Lovastatin mediated G1 arrest in normal and tumor breast cells is through inhibition of CDK2 activity and redistribution of p21 and p27, independent of p53. Oncogene 17:2393–2402

    Article  PubMed  CAS  Google Scholar 

  14. Matar P, Rozados VR, Binda MM, Roggero EA, Bonfil RD, Scharovsky OG (1999) Inhibitory effect of lovastatin on spontaneous metastases derived from a rat lymphoma. Clin Exp Metastasis 17:19–25

    Article  PubMed  CAS  Google Scholar 

  15. Cafforio P, Dammacco F, Gernone A, Silvestris F (2005) Statins activate the mitochondrial pathway of apoptosis in human lymphoblasts and myeloma cells. Carcinogenesis 26:883–891

    Article  PubMed  CAS  Google Scholar 

  16. Agarwal B, Bhendwal S, Halmos B, Moss SF, Ramey WG, Holt PR (1999) Lovastatin augments apoptosis induced by chemotherapeutic agents in colon cancer cells. Clin Cancer Res 5:2223–2229

    PubMed  CAS  Google Scholar 

  17. Super HJ, McCabe NR, Thirman MJ, Larson RA, Le Beau MM, Pedersen-Bjergaard J et al (1993) Rearrangements of the MLL gene in therapy-related acute myeloid leukemia in patients previously treated with agents targeting DNA-topoisomerase II. Blood 82:3705–3711

    PubMed  CAS  Google Scholar 

  18. Schoch C, Schnittger S, Klaus M, Kern W, Hiddemann W, Haferlach T (2003) AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood 102:2395–2402

    Article  PubMed  CAS  Google Scholar 

  19. Dobson CL, Warren AJ, Pannell R, Forster A, Lavenir I, Corral J et al (1999) The mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis. EMBO J 18:3564–3574

    Article  PubMed  CAS  Google Scholar 

  20. Muntean AG, Tan J, Sitwala K, Huang Y, Bronstein J, Connelly JA et al (2010) The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis. Cancer Cell 17:609–621

    Article  PubMed  CAS  Google Scholar 

  21. Monroe SC, Jo SY, Sanders DS, Basrur V, Elenitoba-Johnson KS, Slany RK et al (2011) MLL-AF9 and MLL-ENL alter the dynamic association of transcriptional regulators with genes critical for leukemia. Exp Hematol 39(77–86):e71–e75

    Google Scholar 

  22. Liu H, Takeda S, Kumar R, Westergard TD, Brown EJ, Pandita TK et al (2010) Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature 467:343–346

    Article  PubMed  CAS  Google Scholar 

  23. Paulsen RD, Cimprich KA (2007) The ATR pathway: fine-tuning the fork. DNA Repair (Amst) 6:953–966

    Article  CAS  Google Scholar 

  24. Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28:739–745

    Article  PubMed  CAS  Google Scholar 

  25. Cortez D, Guntuku S, Qin J, Elledge SJ (2001) ATR and ATRIP: partners in checkpoint signaling. Science 294:1713–1716

    Article  PubMed  CAS  Google Scholar 

  26. Shutes A, Onesto C, Picard V, Leblond B, Schweighoffer F, Der CJ (2007) Specificity and mechanism of action of EHT 1864, a novel small molecule inhibitor of Rac family small GTPases. J Biol Chem 282:35666–35678

    Article  PubMed  CAS  Google Scholar 

  27. Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y (2004) Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 101:7618–7623

    Article  PubMed  CAS  Google Scholar 

  28. Onesto C, Shutes A, Picard V, Schweighoffer F, Der CJ (2008) Characterization of EHT 1864, a novel small molecule inhibitor of Rac family small GTPases. Methods Enzymol 439:111–129

    Article  PubMed  CAS  Google Scholar 

  29. Kinner A, Wu W, Staudt C, Iliakis G (2008) Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36:5678–5694

    Article  PubMed  CAS  Google Scholar 

  30. Olive PL (2004) Detection of DNA damage in individual cells by analysis of histone H2AX phosphorylation. Methods Cell Biol 75:355–373

    Article  PubMed  CAS  Google Scholar 

  31. Wong WW, Dimitroulakos J, Minden MD, Penn LZ (2002) HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis. Leukemia 16:508–519

    Article  PubMed  CAS  Google Scholar 

  32. Roboz GJ (2012) Current treatment of acute myeloid leukemia. Curr Opin Oncol 24:711–719

    Article  PubMed  CAS  Google Scholar 

  33. Burnett A, Wetzler M, Lowenberg B (2011) Therapeutic advances in acute myeloid leukemia. J Clin Oncol 29:487–494

    Article  PubMed  Google Scholar 

  34. Yoshida T, Zhang Y, Rivera Rosado LA, Chen J, Khan T, Moon SY et al (2010) Blockade of Rac1 activity induces G1 cell cycle arrest or apoptosis in breast cancer cells through downregulation of cyclin D1, survivin, and X-linked inhibitor of apoptosis protein. Mol Cancer Ther 9:1657–1668

    Article  PubMed  CAS  Google Scholar 

  35. Li W, Wang H, Kuang CY, Zhu JK, Yu Y, Qin ZX et al (2012) An essential role for the Id1/PI3K/Akt/NFkB/survivin signalling pathway in promoting the proliferation of endothelial progenitor cells in vitro. Mol Cell Biochem 363:135–145

    Article  PubMed  CAS  Google Scholar 

  36. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  37. Stiff T, O’Driscoll M, Rief N, Iwabuchi K, Lobrich M, Jeggo PA (2004) ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 64:2390–2396

    Article  PubMed  CAS  Google Scholar 

  38. Rothkamm K, Lobrich M (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses. Proc Natl Acad Sci USA 100:5057–5062

    Article  PubMed  CAS  Google Scholar 

  39. Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12:440–450

    Article  PubMed  CAS  Google Scholar 

  40. Graaf MR, Richel DJ, van Noorden CJ, Guchelaar HJ (2004) Effects of statins and farnesyltransferase inhibitors on the development and progression of cancer. Cancer Treat Rev 30:609–641

    Article  PubMed  CAS  Google Scholar 

  41. Agarwal B, Halmos B, Feoktistov AS, Protiva P, Ramey WG, Chen M et al (2002) Mechanism of lovastatin-induced apoptosis in intestinal epithelial cells. Carcinogenesis 23:521–528

    Article  PubMed  CAS  Google Scholar 

  42. Xia Z, Tan MM, Wong WW, Dimitroulakos J, Minden MD, Penn LZ (2001) Blocking protein geranylgeranylation is essential for lovastatin-induced apoptosis of human acute myeloid leukemia cells. Leukemia 15:1398–1407

    Article  PubMed  CAS  Google Scholar 

  43. Dimitroulakos J, Nohynek D, Backway KL, Hedley DW, Yeger H, Freedman MH et al (1999) Increased sensitivity of acute myeloid leukemias to lovastatin-induced apoptosis: a potential therapeutic approach. Blood 93:1308–1318

    PubMed  CAS  Google Scholar 

  44. Wu J, Wong WW, Khosravi F, Minden MD, Penn LZ (2004) Blocking the Raf/MEK/ERK pathway sensitizes acute myelogenous leukemia cells to lovastatin-induced apoptosis. Cancer Res 64:6461–6468

    Article  PubMed  CAS  Google Scholar 

  45. Huelsenbeck J, Henninger C, Schad A, Lackner KJ, Kaina B, Fritz G (2011) Inhibition of Rac1 signaling by lovastatin protects against anthracycline-induced cardiac toxicity. Cell Death Dis 2:e190. doi:110.1038/cddis.2011.1065

    Article  PubMed  CAS  Google Scholar 

  46. Rashid M, Tawara S, Fukumoto Y, Seto M, Yano K, Shimokawa H (2009) Importance of Rac1 signaling pathway inhibition in the pleiotropic effects of HMG-CoA reductase inhibitors. Circ J 73:361–370

    Article  PubMed  CAS  Google Scholar 

  47. Mizukawa B, Wei J, Shrestha M, Wunderlich M, Chou FS, Griesinger A et al (2011) Inhibition of Rac GTPase signaling and downstream prosurvival Bcl-2 proteins as combination targeted therapy in MLL-AF9 leukemia. Blood 118:5235–5245

    Article  PubMed  CAS  Google Scholar 

  48. Mulloy JC, Wunderlich M, Zheng Y, Wei J (2008) Transforming human blood stem and progenitor cells: a new way forward in leukemia modeling. Cell Cycle 7:3314–3319

    Article  PubMed  CAS  Google Scholar 

  49. Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JS et al (2008) Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell 13:483–495

    Article  PubMed  CAS  Google Scholar 

  50. Somervaille TC, Cleary ML (2006) Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell 10:257–268

    Article  PubMed  CAS  Google Scholar 

  51. Perona R, Montaner S, Saniger L, Sanchez-Perez I, Bravo R, Lacal JC (1997) Activation of the nuclear factor-kappaB by Rho, CDC42, and Rac-1 proteins. Genes Dev 11:463–475

    Article  PubMed  CAS  Google Scholar 

  52. Mabuchi S, Ohmichi M, Nishio Y, Hayasaka T, Kimura A, Ohta T et al (2004) Inhibition of NFkappaB increases the efficacy of cisplatin in in vitro and in vivo ovarian cancer models. J Biol Chem 279:23477–23485

    Article  PubMed  CAS  Google Scholar 

  53. Sandrock K, Bielek H, Schradi K, Schmidt G, Klugbauer N (2010) The nuclear import of the small GTPase Rac1 is mediated by the direct interaction with karyopherin alpha2. Traffic 11:198–209

    Article  PubMed  CAS  Google Scholar 

  54. Maroto B, Ye MB, von Lohneysen K, Schnelzer A, Knaus UG (2008) P21-activated kinase is required for mitotic progression and regulates Plk1. Oncogene 27:4900–4908

    Article  PubMed  CAS  Google Scholar 

  55. Halet G, Carroll J (2007) Rac activity is polarized and regulates meiotic spindle stability and anchoring in mammalian oocytes. Dev Cell 12:309–317

    Article  PubMed  CAS  Google Scholar 

  56. Nieborowska-Skorska M, Kopinski PK, Ray R, Hoser G, Ngaba D, Flis S et al (2012) Rac2-MRC-cIII-generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood 119:4253–4263

    Article  PubMed  CAS  Google Scholar 

  57. Patel KJ, Joenje H (2007) Fanconi anemia and DNA replication repair. DNA Repair (Amst) 6:885–890

    Article  CAS  Google Scholar 

  58. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    Article  PubMed  CAS  Google Scholar 

  59. Helleday T (2011) The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol 5:387–393

    Article  PubMed  CAS  Google Scholar 

  60. Sallmyr A, Fan J, Datta K, Kim KT, Grosu D, Shapiro P et al (2008) Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: implications for poor prognosis in AML. Blood 111:3173–3182

    Article  PubMed  CAS  Google Scholar 

  61. Muller LU, Schore RJ, Zheng Y, Thomas EK, Kim MO, Cancelas JA et al (2008) Rac guanosine triphosphatases represent a potential target in AML. Leukemia 22:1803–1806

    Article  PubMed  CAS  Google Scholar 

  62. Thomas EK, Cancelas JA, Chae HD, Cox AD, Keller PJ, Perrotti D et al (2007) Rac guanosine triphosphatases represent integrating molecular therapeutic targets for BCR-ABL-induced myeloproliferative disease. Cancer Cell 12:467–478

    Article  PubMed  CAS  Google Scholar 

  63. Thomas EK, Cancelas JA, Zheng Y, Williams DA (2008) Rac GTPases as key regulators of p210-BCR-ABL-dependent leukemogenesis. Leukemia 22:898–904

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank C. Brachetti for excellent technical assistance. This work was supported by the José Carreras Leukämie Stiftung (SP 10/07) and the Deutsche Krebshilfe (109188).

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Fritz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinterleitner, C., Huelsenbeck, J., Henninger, C. et al. Rac1 signaling protects monocytic AML cells expressing the MLL-AF9 oncogene from caspase-mediated apoptotic death. Apoptosis 18, 963–979 (2013). https://doi.org/10.1007/s10495-013-0842-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0842-6

Keywords

Navigation