Skip to main content
Log in

Neuroprotection against neuroblastoma cell death induced by depletion of mitochondrial glutathione

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Mitochondrial glutathione pool is vital in protecting cells against oxidative stress as the majority of the cellular reactive oxygen species are generated in mitochondria. Oxidative stress is implicated as a causative factor in neuronal death in neurodegenerative disorders. We hypothesized that depletion of mitochondrial glutathione leads to mitochondrial dysfunction and apoptotic death of SK-N-SH (human neuroblastoma) cells and investigated the neuroprotective strategies against GSH depletion. SK-N-SH cells were treated with two distinct inhibitors of glutathione metabolism: L-buthionine-(S, R)-sulfoximine (BSO) and ethacrynic acid (EA). EA treatment caused depletion of both the total and mitochondrial glutathione (while BSO had no effect on mitochondrial glutathione), enhanced rotenone-induced ROS production, and reduced the viability of SK-N-SH cells. Glutathione depletion by BSO or EA demonstrated positive features of mitochondria-mediated apoptosis in neuroblastoma cell death. Prevention of apoptosis by Bcl2 overexpression or use of antioxidant ebselen did not confer neuroprotection. Co-culture with U-87 (human glioblastoma) cells protected SK-N-SH cells from the cell death. Our data suggest that depletion of mitochondrial glutathione leads to mitochondrial dysfunction and apoptosis. The study indicates that preventing mitochondrial glutathione depletion could become a novel strategy for the development of neuroprotective therapeutics in neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BSO:

L-Buthionine-(S,R)-sulfoximine

EA:

Ethacrynic acid

ETC:

Electron transport chain

GSH:

Glutathione

PI:

Propidium iodide

ROS:

Reactive oxygen species

SK-N-SH:

A human neuroblastoma cell line

U-87:

A human glioblastoma cell line

References

  1. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP et al (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52:515–520

    Article  PubMed  CAS  Google Scholar 

  2. Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263:17205–17208

    PubMed  CAS  Google Scholar 

  3. Griffith OW (1999) Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med 27:922–935

    Article  PubMed  CAS  Google Scholar 

  4. Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem 254:7558–7560

    PubMed  CAS  Google Scholar 

  5. Griffith OW, Meister A (1985) Origin and turnover of mitochondrial glutathione. Proc Natl Acad Sci USA 82:4668–4672

    Article  PubMed  CAS  Google Scholar 

  6. Ploemen JH, Van Schanke A, Van Ommen B, Van Bladeren PJ (1994) Reversible conjugation of ethacrynic acid with glutathione and human glutathione S-transferase P1–1. Cancer Res 54:915–919

    PubMed  CAS  Google Scholar 

  7. Muyderman H, Nilsson M, Sims NR (2004) Highly selective and prolonged depletion of mitochondrial glutathione in astrocytes markedly increases sensitivity to peroxynitrite. J Neurosci 24:8019–8028

    Article  PubMed  CAS  Google Scholar 

  8. Muyderman H, Wadey AL, Nilsson M, Sims NR (2007) Mitochondrial glutathione protects against cell death induced by oxidative and nitrative stress in astrocytes. J Neurochem 102:1369–1382

    Article  PubMed  CAS  Google Scholar 

  9. Fernandez-Checa JC (2003) Redox regulation and signaling lipids in mitochondrial apoptosis. Biochem Biophys Res Commun 304:471–479

    Article  PubMed  CAS  Google Scholar 

  10. Sims NR, Nilsson M, Muyderman H (2004) Mitochondrial glutathione: a modulator of brain cell death. J Bioenerg Biomembr 36:329–333

    Article  PubMed  CAS  Google Scholar 

  11. Huang J, Philbert MA (1996) Cellular responses of cultured cerebellar astrocytes to ethacrynic acid-induced perturbation of subcellular glutathione homeostasis. Brain Res 711:184–192

    Article  PubMed  CAS  Google Scholar 

  12. Reichelt KL, Fonnum F (1969) Subcellular localization of N-acetyl-aspartyl-glutamate, N-acetyl-glutamate and glutathione in brain. J Neurochem 16:1409–1416

    Article  PubMed  CAS  Google Scholar 

  13. Raps SP, Lai JC, Hertz L, Cooper AJ (1989) Glutathione is present in high concentrations in cultured astrocytes but not in cultured neurons. Brain Res 493:398–401

    Article  PubMed  CAS  Google Scholar 

  14. Dringen R, Hirrlinger J (2003) Glutathione pathways in the brain. Biol Chem 384:505–516

    Article  PubMed  CAS  Google Scholar 

  15. Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 267:4912–4916

    Article  PubMed  CAS  Google Scholar 

  16. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  PubMed  CAS  Google Scholar 

  17. Martensson J, Lai JC, Meister A (1990) High-affinity transport of glutathione is part of a multicomponent system essential for mitochondrial function. Proc Natl Acad Sci USA 87:7185–7189

    Article  PubMed  CAS  Google Scholar 

  18. Lash LH (2006) Mitochondrial glutathione transport: physiological, pathological and toxicological implications. Chem Biol Interact 163:54–67

    Article  PubMed  CAS  Google Scholar 

  19. Nakamura Y, Feng Q, Kumagai T, Torikai K, Ohigashi H et al (2002) Ebselen, a glutathione peroxidase mimetic seleno-organic compound, as a multifunctional antioxidant. Implication for inflammation-associated carcinogenesis. J Biol Chem 277:2687–2694

    Article  PubMed  CAS  Google Scholar 

  20. Lai JC, Clark JB (1976) Preparation and properties of mitochondria derived from synaptosomes. Biochem J 154:423–432

    PubMed  CAS  Google Scholar 

  21. Clark JB, Lai JC (1989) Glycolytic, tricarboxylic acid cycle and related enzymes in brain. In: Butterworth RF (ed) Boulton AA BG. Humana, NeuroMethods. Clifton, pp 233–281

    Google Scholar 

  22. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  PubMed  CAS  Google Scholar 

  23. Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B et al (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278:8516–8525

    Article  PubMed  CAS  Google Scholar 

  24. Chresta CM, Masters JR, Hickman JA (1996) Hypersensitivity of human testicular tumors to etoposide-induced apoptosis is associated with functional p53 and a high Bax:Bcl-2 ratio. Cancer Res 56:1834–1841

    PubMed  CAS  Google Scholar 

  25. Walker JE, Skehel JM, Buchanan SK (1995) Structural analysis of NADH: ubiquinone oxidoreductase from bovine heart mitochondria. Methods Enzymol 260:14–34

    Article  PubMed  CAS  Google Scholar 

  26. Zheng L, Dengler TJ, Kluger MS, Madge LA, Schechner JS et al (2000) Cytoprotection of human umbilical vein endothelial cells against apoptosis and CTL-mediated lysis provided by caspase-resistant Bcl-2 without alterations in growth or activation responses. J Immunol 164:4665–4671

    PubMed  CAS  Google Scholar 

  27. Ransom B, Behar T, Nedergaard M (2003) New roles for astrocytes (stars at last). Trends Neurosci 26:520–522

    Article  PubMed  CAS  Google Scholar 

  28. Schulz JB, Lindenau J, Seyfried J, Dichgans J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911

    Article  PubMed  CAS  Google Scholar 

  29. Griffin S, Clark JB, Canevari L (2005) Astrocyte-neurone communication following oxygen-glucose deprivation. J Neurochem 95:1015–1022

    Article  PubMed  CAS  Google Scholar 

  30. Finsterer J (2004) Mitochondriopathies. Eur J Neurol 11:163–186

    Article  PubMed  CAS  Google Scholar 

  31. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  32. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    Article  PubMed  CAS  Google Scholar 

  33. Chao DT, Korsmeyer SJ (1998) BCL-2 family: regulators of cell death. Annu Rev Immunol 16:395–419

    Article  PubMed  CAS  Google Scholar 

  34. Spierings D, McStay G, Saleh M, Bender C, Chipuk J et al (2005) Connected to death: the (unexpurgated) mitochondrial pathway of apoptosis. Science 310:66–67

    Article  PubMed  CAS  Google Scholar 

  35. Makin GW, Corfe BM, Griffiths GJ, Thistlethwaite A, Hickman JA et al (2001) Damage-induced Bax N-terminal change, translocation to mitochondria and formation of Bax dimers/complexes occur regardless of cell fate. EMBO J 20:6306–6315

    Article  PubMed  CAS  Google Scholar 

  36. Werner P, Cohen G (1993) Glutathione disulfide (GSSG) as a marker of oxidative injury to brain mitochondria. Ann N Y Acad Sci 679:364–369

    Article  PubMed  CAS  Google Scholar 

  37. Jain A, Martensson J, Stole E, Auld PA, Meister A (1991) Glutathione deficiency leads to mitochondrial damage in brain. Proc Natl Acad Sci USA 88:1913–1917

    Article  PubMed  CAS  Google Scholar 

  38. Meister A (1995) Mitochondrial changes associated with glutathione deficiency. Biochim Biophys Acta 1271:35–42

    Article  PubMed  Google Scholar 

  39. de la Asuncion JG, Millan A, Pla R, Bruseghini L, Esteras A et al (1996) Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. Faseb J 10:333–338

    PubMed  Google Scholar 

  40. Isaac AO, Dukhande VV, Lai JC (2007) Metabolic and antioxidant system alterations in an astrocytoma cell line challenged with mitochondrial DNA deletion. Neurochem Res 32:1906–1918

    Article  PubMed  CAS  Google Scholar 

  41. Merad-Boudia M, Nicole A, Santiard-Baron D, Saille C, Ceballos-Picot I (1998) Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson’s disease. Biochem Pharmacol 56:645–655

    Article  PubMed  CAS  Google Scholar 

  42. Chi L, Ke Y, Luo C, Gozal D, Liu R (2007) Depletion of reduced glutathione enhances motor neuron degeneration in vitro and in vivo. Neuroscience 144:991–1003

    Article  PubMed  CAS  Google Scholar 

  43. Seyfried J, Soldner F, Schulz JB, Klockgether T, Kovar KA et al (1999) Differential effects of L-buthionine sulfoximine and ethacrynic acid on glutathione levels and mitochondrial function in PC12 cells. Neurosci Lett 264:1–4

    Article  PubMed  CAS  Google Scholar 

  44. Wullner U, Seyfried J, Groscurth P, Beinroth S, Winter S et al (1999) Glutathione depletion and neuronal cell death: the role of reactive oxygen intermediates and mitochondrial function. Brain Res 826:53–62

    Article  PubMed  CAS  Google Scholar 

  45. Dukhande VV, Malthankar-Phatak GH, Hugus JJ, Daniels CK, Lai JC (2006) Manganese-induced neurotoxicity is differentially enhanced by glutathione depletion in astrocytoma and neuroblastoma cells. Neurochem Res 31:1349–1357

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from Idaho Biomedical Research Infrastructure Network (NIH NCRR BRINIP20RR016454) to JCKL, Idaho State University GSRSC pre-doctoral grant to VVD and NIH RO1 DK077910 to ALMB. We are thankful for the important suggestions from Drs. Christopher Daniels, Alok Bhushan and Leslie Devaud. VVD thanks the Idaho INBRE NIH program (grant # P20RR016454) for a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vikas V. Dukhande or James C.K. Lai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dukhande, V.V., Kawikova, I., Bothwell, A.L. et al. Neuroprotection against neuroblastoma cell death induced by depletion of mitochondrial glutathione. Apoptosis 18, 702–712 (2013). https://doi.org/10.1007/s10495-013-0836-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0836-4

Keywords

Navigation