Skip to main content
Log in

Effects of Differential Diffusion on Predicted Autoignition Delay Times Inspired by H2/N2 Jet Flames in a Vitiated Coflow Using the Linear Eddy Model

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Mixing and chemistry interactions in a H2/N2 jet flame into a vitiated coflow are considered key factors affecting autoignition. A 1-D numerical model under laminar flow condition first is simulated to reveal the effects of fuel species, pressure, and coflow properties on the autoignition with and without the consideration of preferential diffusion among species. Proper laminar reference autoignition delays are proposed and examined for different diffusion models. Next, the reference autoignition delays defined from laminar simulations are investigated in an example turbulent flow using the Linear Eddy Model (LEM). LEM is used to model the effect of turbulent mixing on autoignition, where we specifically investigate if the effect of turbulence on autoignition can be classified in two regimes, which are dependent on a proper reference laminar autoignition delay and turbulence time scale. The trend of the effect of differential diffusion on autoignition versus turbulence Reynolds is simulated and analyzed, and several tentative conclusions are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cabra, R., Myhrvold, T., Chen, J.Y., Dibble, R.W., Karpetis, A.N., Barlow, R.S.: Simultaneous laser raman-rayleigh-lif measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proc. Combust. Inst. 29, 1881–1888 (2002)

    Article  Google Scholar 

  2. Chakravarthy, V.K., Menon, S.: Large-eddy simulation of turbulent premixed flames in the flamelet regime. Combust. Sci. Technol. 162 (1), 175–222 (2001)

    Article  Google Scholar 

  3. Chen, J.Y., Kollmann, W.: PDF modeling of chemical nonequilibrium effects in turbulent nonpremixed hydrocarbon flames. Symp. (Int.) Combust. 22, 645–653 (1989)

    Article  Google Scholar 

  4. Chen, J.Y., Chang, W.C.: Modeling differential diffusino effects in turbulent nonreacting/reacting jets with stochastic mixing models. Combust. Sci. Technol. 4–6, 343–375 (1998)

    Article  Google Scholar 

  5. Domingo, P., Vervisch, L., Revéilon, J.: DNS analysis of partially premixed combustion in spray and gaseous turbulent flame-bases stabilized in hot air. Combust. Flame 140, 172–195 (2005)

    Article  Google Scholar 

  6. Hilbert, R., Thévenin, D.: Autoignition of turbulent non-premixed flames investigated using direct numerical simulations. Combust. Flame 128, 22–37 (2002)

    Article  Google Scholar 

  7. Im, H.G., Chen, J.H., Law, C.K.: Ignition of hydrogen-air mixing layer in turbulent flows. Symp. (Int.) Combust. 27, 1047–1056 (1998)

    Article  Google Scholar 

  8. Kerkemeier, S.G., Markides, C.N., Frouzakis, C.E, Boulouchos, K.: Direct numerical simulation of the autoignition of a hydrogen plume in a turbulent coflow of hot air. J. Fluid Mech. 720, 424–456 (2013)

    Article  MATH  Google Scholar 

  9. Kerstein, A.R.: Linear-Eddy Modeling of Turbulent Transport. Part 6: Microstructure of Diffusive Scalar Mixing Fields. J. Fluid Mech. 261, 361–394 (1991)

    Article  Google Scholar 

  10. Knikker, R., Dauptain, A., Cuenot, B., Poinsot, T.: Comparison of computational methodologies for ignition of diffusion layers. Combust. Sci. Technol. 175, 1783–1806 (2003)

    Article  Google Scholar 

  11. Li, J., Zhao, Z., Kazakov, A., Dryer, F.L.: An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 36, 566–575 (2004)

    Article  Google Scholar 

  12. Mastorakos, E., Baritaud, T.A., Poinsot, T.J.: Numerical simulations of autoignition in turbulent mixing flows. Combust. Flame 109, 198–223 (1997)

    Article  Google Scholar 

  13. Mastorakos, E.: Ignition of turbulent non-premixed flames. Prog. Energy Combust. Sci. 35, 57–97 (2009)

    Article  Google Scholar 

  14. McMurty, P.A., Menon, S., Kerstein, A.R.: Linear Eddy Modeling of Turbulent Combustion. Energy Fuels 7, 817–826 (1993)

    Article  Google Scholar 

  15. Ochoa, J.S., Sanchez-Insa, A., Fueyo, N.: Subgrid linear eddy mixing and combustion modelling of a turbulent nonpremixed piloted jet flame. Flow, Turbul. Combust. 89, 295–309 (2012)

    Article  MATH  Google Scholar 

  16. Oevermann, M., Schmidt, H., Kerstein, A.R.: Investigation of autoignition under thermal stratification using linear eddy modeling. Combust. Flame 155, 370–379 (2008)

    Article  Google Scholar 

  17. Pitsch, H., Peters, N.: A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects. Combust. Flame 114, 26–40 (1998)

    Article  Google Scholar 

  18. Sankaran, V., Menon, S.: Subgrid combustion modeling of 3-D premixed flames in the thin-reaction-zone regime. Proc. Combust. Inst. 30, 575–582 (2005)

    Article  Google Scholar 

  19. Sankaran, V., Drozda, T.G., Oefelein, J.C.: A tabulated closure for turbulent non-premixed combustion based on the linear eddy model. Proc. Combust. Inst. 32, 1571–1578 (2009)

    Article  Google Scholar 

  20. Sreedhara, S., Lakshmisha, K.N.: Autoignition in a non-premixed medium: DNS studies on the effects of three-dimensional turbulence. Proc. Combust. Inst. 29, 2051–2059 (2002)

    Article  Google Scholar 

  21. Sung, C.J., Law, C.K., Chen, J.Y.: An augmented reduced mechanism for methane oxidation with comprehensive global parametric validation. Proc. Combust. Inst. 27, 295–304 (1998)

    Article  Google Scholar 

  22. Warnatz, J., Maas, U., Dibble, R.W.: Combustion. Springer, Germany (2006)

    Google Scholar 

  23. Yetter, R., Dryer, F., Rabitz, H.: A comprehensive reaction mechanism for carbon monoxide/hydrogen/oxygen kinetics. Combust. Sci. Technol. 79, 97–128 (1991)

    Article  Google Scholar 

  24. Yoo, C.S., Sankaran, R., Chen, J.H.: Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: flame stabilization and structure. J. Fluid Mech. 640, 453–481 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Frederick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frederick, D., Chen, J. Effects of Differential Diffusion on Predicted Autoignition Delay Times Inspired by H2/N2 Jet Flames in a Vitiated Coflow Using the Linear Eddy Model. Flow Turbulence Combust 93, 283–304 (2014). https://doi.org/10.1007/s10494-014-9547-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-014-9547-3

Keywords

Navigation