Skip to main content
Log in

Acetone Droplet Behavior in Reacting and Non Reacting Turbulent Flow

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Acetone droplet characteristics in reacting and non-reacting turbulent flow are predicted and compared to experimental data. Investigations are conducted to study the effects of surrounding environment properties on the velocities, dispersion, and evaporation of a relatively volatile spray fuel that featured a wide range of Stokes numbers. The simulations are performed in the framework of Reynolds Averaged Navier Stokes equations along with the Eulerian-Lagrangian approach in which 12 different classes of the dispersed phase. The phase transition is modeled by the Langmuir-Knudsen law that accounts for non equilibrium effects based on a consistent determination of the molar mass fraction on the droplet surfaces. For the droplet dispersion, the Markov sequence model is improved by adding a correction drift term to the fluid fluctuation velocity at the parcel position along the droplet trajectory. This correction term aimed at accounting for the non-homogeneity effects in the turbulent flow. The combustion is captured using the Bray-Moss-Libby model that is extended to account for the partially premixed spray combustion. The chemistry is described with the flamelet model using a recent detailed reaction mechanism that involves 84 species and 409 reactions for which the Lewis number is not set to the unity. Mean droplet velocities for reacting and non-reacting test cases are compared with experimental data. Good agreement is observed. The spray is interacting with the nozzle edge developing new classes and relatively dense region. Hence the RMS-velocities close to the nozzle exit plan demonstrate discrepancies. The droplets group combustion effect is found to be important in the modeling of the burning velocity which influences the flame propagation. Reasonable agreements between the numerical and the experimental results are also observed in the spray flux and temperature profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ge, H.W., Gutheil, E.: Simulation of a turbulent spray flame using coupled PDF gas phase and spray flamelet modeling. Combust. Flame 153(1–2), 173–185 (2008)

    Article  Google Scholar 

  2. Düwel, I., Ge, H.-W., Kronemayer, H., Dibble, R., Gutheil, E., Schulz, C., Wolfrum, J.: Experimental and numerical characterization of a turbulent spray flame. Proc. Combust. Inst. 31(2), 2247–2255 (2007)

    Article  Google Scholar 

  3. Watanabe, H., Kurose, R., Hwang, S.-M., Akamatsu, F.: Characteristics of flamelets in spray flames formed in a laminar counterflow. Combust. Flame 148(4), 234–248 (2007)

    Article  Google Scholar 

  4. Tsai, C.-H., Hou, S.-S., Lin, T.-H.: A spray flame propagating in a nonadiabatic duct with varying cross-sectional area. Combust. Flame 144(1–2), 277–288 (2006)

    Article  Google Scholar 

  5. Patel, N., Menon, S.: Simulation of spray-turbulence-flame interactions in a lean direct injection combustor. Combust. Flame 153(1–2), 228–257 (2008)

    Article  Google Scholar 

  6. Akamatsu, F., Miutani, Y., Katsuki, M., Tsushima, S., Cho, Y.D.: Measurement of the local group combustion number of droplet clusters in a premixed spray stream. Int. Symp. Comb. 26(1), 1723–1729 (1996)

    Article  Google Scholar 

  7. Mortensen, M., Bilger, R.W.: Derivation of the conditional moment closure equations for spray combustion. Combust. Flame 156(1), 62–72 (2009)

    Article  Google Scholar 

  8. Marley, S.K., Welle, E.J., Lyons, K.M., Roberts, W.L.: Effects of leading edge entrainment on the double flame structure in lifted ethanol spray flames. Exp. Therm. Fluid Sci. 29(1), 23–31 (2004)

    Article  Google Scholar 

  9. Pichard, C., Michou, Y., Chauveau, C., Gökalp, L.: Average droplet vaporization rates in partially prevaporized turbulent spray flames. Proc. Combust. Inst. 29(1), 527–533 (2002)

    Article  Google Scholar 

  10. Senoner, J.M., Sanjosé, M., Lederlin, T., Jaegle, F., García, M., Riber, E., Cuenot, B., Gicquel, L., Pitsch, H., Poinsot, T.: Eulerian and Lagrangian large-eddy simulations of an evaporating two-phase flow. C. R. Mécanique 337(6–7), 458–468 (2009)

    Article  MATH  Google Scholar 

  11. Apte, S.V., Mahesh, K., Moin, P.: Large-eddy simulation of evaporating spray in a coaxial combustor. Proc. Combust. Inst. 32(2), 2247–2256 (2009)

    Article  Google Scholar 

  12. Bini, M., Jones, W.P.: Large eddy simulation of an evaporating acetone spray. Int. J. Heat Fluid Flow 30(3), 471–480 (2009)

    Article  Google Scholar 

  13. Pera, C., Réveillon, J., Vervisch, L., Domingo, P.: Modeling subgrid scale mixture fraction variance in LES of evaporating spray. Combust. Flame 146(4), 635–648 (2006)

    Article  Google Scholar 

  14. Crowe, C.T: Multiphase flow handbook. September 19, 2005, ISBN-10: 0849312809, ISBN-13: 978-0849312809. Edition: 1, section 12, pp. 116–441

  15. Chrigui, M., Sadiki, A., Janicka, J., Hage, K., Dreizler, A.: Experimental and numerical analysis of spray dispersion and evaporation in a combustion chamber. At. Sprays 19(10), 929–955 (2009)

    Article  Google Scholar 

  16. Chrigui, M.: N-Hpetane spray evaporation and dispersion in turbulent flow within a complex geometry configuration. Comp. Therm. Sci. 2(1), 55–78 (2010)

    Article  Google Scholar 

  17. Chrigui, M., Moesl, K., Ahmadi, W., Sadiki, A., Janicka, J.: Partially premixed prevaporized kerosene spray combustion in turbulent flow. Exp. Therm. Fluid Sci. 34(3), 308–315 (2010)

    Article  Google Scholar 

  18. Chiu, H.H., Kim, H.Y., Croke, E.J.: Internal group combustion of liquid droplets. Symp. Int. Comb. 19(1), 971–980 (1982)

    Article  Google Scholar 

  19. Stårner, S.H., Gounder, J., Masri, A.R.: Effects of turbulence and carrier fluid on simple, turbulent spray jet flames. Combust. Flame 143(4), 420–432 (2005)

    Article  Google Scholar 

  20. Metghalchi, M., Keck, J.C.: Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature. Combust. Flame 48, 191–210 (1982)

    Article  Google Scholar 

  21. Dahoe, A.E., de Goey, L.P.H.: On the determination of the laminar burning velocity from closed vessel gas explosions. J. Loss Prev. Process Ind. 16(6), 457–478 (2003)

    Article  Google Scholar 

  22. Pichon, S., Black, G., Chaumeix, N., Yahyaoui, M., Simmie, J.M., Curran, H.J., Donohue, R.: The combustion chemistry of a fuel tracer: measured flame speeds and ignition delays and a detailed chemical kinetic model for the oxidation of acetone. Combust. Flame 156(2), 494–504 (2009)

    Article  Google Scholar 

  23. Molkov, V.V., Nekrasov, V.P.: Burning velocity of acetone-air flames versus pressure and temperature. Combust. Explos. Shock Waves 17(N3), 280–283 (1981)

    Article  Google Scholar 

  24. Masri, A.R., Gounder, J.D.: Turbulent spray flames of acetone and ethanol fuels approaching extinction. Combust. Sci. Technol. 182(4–6), 702–715 (2010)

    Article  Google Scholar 

  25. Gounder, J.D., Masri, A.R.: Flow field and mass flux measurements near the exit plane of spray jets, ICLASS 2009. In: 11th Triennial International Annual Conference on Liquid Atomization and Spray Systems, Vail, Colorado, USA (2009)

  26. Chrigui, M., Zghal, A., Sadiki, A., Janicka, J.: Spray evaporation and dispersion of n-heptane droplets within premixed flame. J. Heat Transfer 46(8), 869–880 (2010)

    Google Scholar 

  27. Muppala, S.P.R., Dinkelacker, F.: Numericak modeling of the pressure dependent reaction source term fpr premixed turbulent methane/air flames. Prog. Comput. Fluid Dyn. 4(6), 328–336 (2004)

    Google Scholar 

  28. Maltsev, A.: Towards the development and assessment of complete CFD models for the simulation of stationary gas turbine combustion processes. Dissertationvom Fachbereich Maschinenbau TU-Darmstadt (2003)

  29. Chrigui, M., Ahmadi, G., Sadiki, A.: Study on interaction in spray between evaporating droplets and turbulence using second order turbulence RANS models and a Lagrangian approach. Prog. Comput. Fluid Dyn. 4, 162–174 (2004)

    Article  Google Scholar 

  30. Miller, R.S., Harstad, K., Bellan, J.: Evaluation of equilibrium and non-equilibrium evaporation models for many droplet gas liquid flow simulation. Int. J. Multiph. Flow 24, 1025–1055 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chrigui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chrigui, M., Gounder, J., Sadiki, A. et al. Acetone Droplet Behavior in Reacting and Non Reacting Turbulent Flow. Flow Turbulence Combust 90, 419–447 (2013). https://doi.org/10.1007/s10494-012-9441-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-012-9441-9

Keywords

Navigation