Skip to main content
Log in

Investigation of the “TECFLAM” Non-premixed Flame Using Large Eddy Simulation and Proper Orthogonal Decomposition

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The confined turbulent swirling non-premixed TECFLAM S09c flame has been investigated using Large Eddy Simulation and a pre-calculated mixture-fraction-based flamelet model in a preliminary step to simulate this flame. The simplified formulation, despite the fact that it cannot capture localized extinctions, is found to reproduce the experimentally-observed vortex breakdown and the results agree well with available experimental data for velocity and mixture fraction. The unsteady flow features before the burner exit and inside the combustion chamber are analyzed with spectral analysis, correlations, and Proper Orthogonal Decomposition. The results show the presence of longitudinal vortices whose axes rotate with the swirl and which cause separation inside the inlet pipe. With combustion, some of the structures are damped and the spectral peaks shift to higher frequencies. Finally, simulations with the full 3D Conditional Moment Closure equation, which allows spatial and temporal fluctuations of the conditionally-filtered reacting scalars, reproduce successfully the flame lift-off observed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Webpage link for animations (2012). http://www.dspace.cam.ac.uk/handle/1810/243652. Accessed 25 November 2012

  2. Ayache, S.: Simulations of turbulent swirl combustors. Ph.D. thesis, University of Cambridge (2012). http://www.dspace.cam.ac.uk/handle/1810/243609. Accessed 25 November 2012

  3. Ayache, S., Dawson, J., Triantafyllidis, A., Balachandran, R., Mastorakos, E.: Experiments and Large-Eddy Simulations of acoustically forced bluff-body flows. Int. J. Heat Fluid Flow 31(5), 754–766 (2010)

    Article  Google Scholar 

  4. Ayache, S., Mastorakos, E.: Conditional moment closure/Large Eddy Simulation of the delft-iii natural gas non-premixed jet flame. Flow Turbul. Combust. 88(1), 207–231 (2012)

    Article  MATH  Google Scholar 

  5. Böckle, S., Kazenwadel, J., Kunzelmann, T., Schulz, C.: Laser-diagnostic multi-species imaging in strongly swirling natural gas flames. Appl. Phys., B Lasers Opt. 71(5), 741–746 (2000)

    Article  Google Scholar 

  6. Cook, A., Riley, J.: A subgrid model for equilibrium chemistry in turbulent flows. Phys. Fluids 6, 2868–2870 (1994)

    Article  Google Scholar 

  7. Duwig, C., Fuchs, L.: Large Eddy Simulation of vortex breakdown/flame interaction. Phys. Fluids 19, 075, 103 (2007)

    Article  Google Scholar 

  8. Duwig, C., Iudiciani, P.: Extended proper orthogonal decomposition for analysis of unsteady flames. Flow Turbul. Combust. 84(1), 25–47 (2010)

    Article  MATH  Google Scholar 

  9. Garmory, A., Mastorakos, E.: Capturing localised extinction in sandia flame f with les-cmc. Proc. Combust. Inst. 33(1), 1673–1680 (2011)

    Article  Google Scholar 

  10. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  11. Heeger, C., Gordon, R., Tummers, M., Sattelmayer, T., Dreizler, A.: Experimental analysis of flashback in lean premixed swirling flames: upstream flame propagation. Exp. Fluids 49(4), 853–863 (2010)

    Article  Google Scholar 

  12. Hussain, F., Jeong, J.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. James, S., Zhu, J., Anand, M.: Large-eddy simulations as a design tool for gas turbine combustion systems. AIAA J. 44(4), 674–686 (2006)

    Article  Google Scholar 

  14. Keck, O., Meier, W., Stricker, W., Aigner, M.: Establishment of a confined swirling natural gas/air flame as a standard flame: temperature and species distributions from laser Raman measurements. Combust. Sci. Technol. 174(8), 117–151 (2002)

    Article  Google Scholar 

  15. Klimenko, A., Bilger, R.: Conditional moment closure for turbulent combustion. Pror. Energy Combust. Sci. 25(6), 595–687 (1999)

    Article  Google Scholar 

  16. Landenfeld, T., Kremer, A., Hassel, E., Janicka, J., Schäfer, T., Kazenwadel, J., Schulz, C., Wolfrum, J.: Laser-diagnostic and numerical study of strongly swirling natural gas flames. Proc. Combust. Inst. 27(1), 1023–1029 (1998)

    Google Scholar 

  17. Lucca-Negro, O., O’Doherty, T.: Vortex breakdown: a review. Pror. Energy Combust. Sci. 27(4), 431–481 (2001)

    Article  Google Scholar 

  18. Meier, W., Keck, O., Noll, B., Kunz, O., Stricker, W.: Investigations in the tecflam swirling diffusion flame: laser raman measurements and cfd calculations. Appl. Phys., B Lasers Opt. 71(5), 725–731 (2000)

    Article  Google Scholar 

  19. Navarro-Martinez, S., Kronenburg, A., Mare, F.: Conditional moment closure for Large Eddy Simulations. Flow Turbul. Combust. 75(1), 245–274 (2005)

    Article  MATH  Google Scholar 

  20. OBrien, E., Jiang, T.: The conditional dissipation rate of an initially binary scalar in homogeneous turbulence. Phys. Fluids, A Fluid Dyn. 3, 3121 (1991)

    Article  Google Scholar 

  21. Paik, J., Sotiropoulos, F.: Numerical simulation of strongly swirling turbulent flows through an abrupt expansion. Int. J. Heat Fluid Flow 31(3), 390–400 (2010)

    Article  Google Scholar 

  22. Pierce, C., Moin, P.: A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids 10, 3041–3044 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sirovich, L.: Turbulence and the dynamics of coherent structures. I-Coherent structures. Q. Appl. Math. 45, 561–571 (1987)

    MathSciNet  MATH  Google Scholar 

  24. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Jr., Lissianski, V.V., Qin, Z.: Gri-mech 3.0 web-site. http://www.me.berkeley.edu/gri_mech/. Accessed 25 November 2012

  25. Sung, C., Law, C., Chen, J.: Augmented reduced mechanisms for no emission in methane oxidation. Combust. Flame 125(1–2), 906–919 (2001)

    Article  Google Scholar 

  26. Syred, N.: A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Pror. Energy Combust. Sci. 32(2), 93–161 (2006)

    Article  Google Scholar 

  27. Triantafyllidis, A., Mastorakos, E., Eggels, R.: Large Eddy Simulations of forced ignition of a non-premixed bluff-body methane flame with conditional moment closure. Combust. Flame 156(12), 2328–2345 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Ayache.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayache, S., Mastorakos, E. Investigation of the “TECFLAM” Non-premixed Flame Using Large Eddy Simulation and Proper Orthogonal Decomposition. Flow Turbulence Combust 90, 219–241 (2013). https://doi.org/10.1007/s10494-012-9428-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-012-9428-6

Keywords

Navigation