Skip to main content
Log in

Second-Order Conditional Moment Closure Simulations of Autoignition of an n-heptane Plume in a Turbulent Coflow of Heated Air

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Autoignition of an n-heptane plume in a turbulent coflow of heated air has been studied using the conditional moment closure (CMC) method with a second-order closure for the conditional chemical source term. Two different methodologies have been considered: (i) the Taylor expansion method, in which the second order correction was based on the solution of the full covariance matrix for the 31 reactive species in the chemical mechanism and hence was not limited to a few selected reactions, and (ii) the conditional PDF method, in which only the temperature conditional variance equation has been solved and its PDF assumed to be a β-function. The results compare favorably with experiment in terms of autoignition location. The structure of the reaction zone in mixture fraction space has been explored. The relative performance of the two methodologies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mastorakos, E., Baritaud, T.A., Poinsot, T.J.: Numerical simulations of autoignition in turbulent mixing flows. Combust. Flame 109, 198–223 (1997)

    Article  Google Scholar 

  2. Im, H.G., Chen, J.H., Law, C.K.: Ignition of hydrogen-air mixing layer in turbulent flows. Proc. Combust. Inst. 27, 1047–1056 (1998)

    Google Scholar 

  3. Sreedhara S., Lakshmisha, K.N.: Autoignition in a non-premixed medium: DNS studies on the effects of three-dimensional turbulence. Proc. Combust. Inst. 29, 2051–2059 (2002)

    Article  Google Scholar 

  4. Echekki, T., Chen, J.H.: Direct numerical simulation of autoignition in non-homogeneous hydrogen-air mixtures. Combust. Flame 134, 169–191 (2003)

    Article  Google Scholar 

  5. Wang, Y., Rutland, C.J.: Direct numerical simulation of ignition in turbulent n-heptane liquid-fuel spray jets. Combust. Flame 149(4), 353–365 (2007)

    Article  Google Scholar 

  6. Mastorakos, E., Pirez Da Cruz, A., Baritaud, T.A., Poinsot, T.J.: A model for the effects of mixing on the autoignition of turbulent flows. Combust. Sci. Technol. 125, 243–282 (1997)

    Article  Google Scholar 

  7. Liñan, A., Crespo A.: An asymptotic analysis of unsteady diffusion flames for large activation energies. Combust. Sci. Technol. 14(1), 95–117 (1976)

    Google Scholar 

  8. Thevenin, D., Candel, S.: Ignition dinamics of a diffusion flame rolled up in a vortex. Phys. Fluids 4, 434 (1995)

    Article  ADS  Google Scholar 

  9. Klimenko, A.Y., Bilger, R.W.: Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci. 25, 595–687 (1999)

    Article  Google Scholar 

  10. Mastorakos, E., Bilger, R.W.: Second-order conditional moment closure for the autoignition of turbulent flows. Phys. Fluids 31(6), 1246–1248 (1998)

    Article  ADS  Google Scholar 

  11. Sreedhara, S., Lakshmisha, K.N.: Assessment of conditional moment closure models of turbulent autoignition using DNS data. Proc. Combust. Inst. 29, 2069–2077 (2002)

    Article  Google Scholar 

  12. Markides, C.N., De Paola, G., Mastorakos. E.: Measurements and simulations of mixing and autoignition of an n-heptane plume in a turbulent flow of heated air. Exp. Therm. Fluid Sci. 31, 393–401 (2007)

    Article  Google Scholar 

  13. Cha, C.M., Pitsch, H.: Higher-order conditional moment closure modelling of local extinction and reignition in turbulent combustion. Combust. Theory Model. 6, 425–437 (2002)

    Article  ADS  Google Scholar 

  14. Sreedhara, S., Huh, K.Y.: Modeling of turbulent, two-dimensional nonpremixed CH4/H2 flame over a bluffbody using first- and second-order elliptic conditional moment closures. Combust. Flame. 143, 119–134 (2005)

    Article  Google Scholar 

  15. Fairweather, M., Woolley, R.M.: First- and second-order elliptic conditional moment closure calculations of piloted methane diffusion flames. Combust. Flame 150(1–2), 92–107 (2007)

    Article  Google Scholar 

  16. Markides, C.N., Mastorakos, E.: An experimental study of hydrogen autoigniton in a turbulent co-flow of heated air. Proc. Combust. Inst. 30, 883–891 (2005)

    Article  Google Scholar 

  17. Markides, C.N., Mastorakos, E.: Measurements of scalar dissipation in a turbulent plume with planar laser-induced fluorescence of acetone. Chem. Eng. Sci. 61(9), 2835–2842 (2006)

    Article  Google Scholar 

  18. Galpin, J., Angelberger, C., Naudin, A., L. Vervisch, L.: Large-eddy simulation of H2-air auto-ignition using tabulated detailed chemistry. J. Turbul. 9, 13 (2008)

    Google Scholar 

  19. Jones, W.P., Navarro-Martinez, S.: Study of hydrogen auto-ignition in a turbulent air co-flow using a Large Eddy Simulation approach. Comput. Fluids 37(7), 802–808 (2008)

    Article  MATH  Google Scholar 

  20. FLUENT (2003) FLUENT V6. http://www.fluent.com. Accessed 2003

  21. Kim, I.S., Mastorakos, E.: Simulations of turbulent non-premixed counter-flow flames with first-order conditional moment closure. Flow Turbul. Combust. 76, 133–162 (2006)

    Article  Google Scholar 

  22. Klimenko, A.Y.: Note on the conditional moment closure in turbulent shear flows. Phys. Fluids 7(2), 446–448 (1995)

    Article  MATH  ADS  Google Scholar 

  23. De Paola, G.: Conditional moment closure for autoignition in turbulent flows. PhD Thesis, University of Cambridge (2007)

  24. Markides, C.N., Mastorakos, E.: Measurements of the statistical distribution of the scalar dissipation rate in turbulent axisymmetric plumes. Flow Turbul. Combust. 81, 221–234 (2008)

    Article  MATH  Google Scholar 

  25. Devaud, C.B., Bray, K.N.C.: Assessment of the applicability of conditional moment closure to a lifted turbulent flame. Phys. Fluids 16(6), 2004–2011 (2004)

    Article  ADS  Google Scholar 

  26. Bikas, G.: Kinetic mechanisms for hydrocarbon ignition. PhD Thesis, University of Aachen (2001)

  27. Hewson, J.C.: Pollutant emission from non premixes hydrocarbon flames. PhD Thesis, University of California, San Diego (1997)

  28. Wright, Y.M., De Paola, G., Boulouchos, K., Mastorakos, E.: Simulation of spray autoignition and flame establishment with two-dimensional CMC. Combust. Flame 143, 402–419 (2005)

    Article  Google Scholar 

  29. Kim, S.H., Huh, K.Y., Bilger, R.W.: Second-Order conditional moment closure modeling of local extinction and reignition in turbulent non-premixed hydrocarbon flames. Proc. Combust. Inst. 29, 2131–2137 (2002)

    Article  Google Scholar 

  30. Sreedhara, S., Huh, K.Y.: Assessment of closure schemes in second-order conditional moment closure against DNS with extinction and ignition. Combust. Flame 143, 386–401 (2005)

    Article  Google Scholar 

  31. Liñan, A.: The asymptotic structure of counterflow diffusion flames for large activation energies. Acta Astronaut. 1, 1007 (1974)

    Article  Google Scholar 

  32. Kronenburg, A., Kostka, M.: Modeling extinction and reignition in turbulent flames. Combust. Flame 143, 342–356 (2005)

    Article  Google Scholar 

  33. Swaminathan, N., Bilger, R.W.: Study of the conditional covariance and variance equations for second order conditional moment closure. Phys. Fluids 11(9), 2679–2695 (1999)

    Article  MATH  ADS  Google Scholar 

  34. Li, J.D., Bilger, R.W.: Measurement and prediction of the conditional variance in a turbulent reactive-scalar mixing layer. Phys. Fluids A 5(12), 3255–3264 (1993)

    Article  ADS  Google Scholar 

  35. Cao, S., Echekki, T.: Autoignition in nonhomogeneous mixtures: conditional statistics and implications for modeling. Combust. Flame 151(1–2), 120–141 (2007)

    Article  Google Scholar 

  36. Kim, S.H.: On the conditional variance and covariance equations for second-order conditional moment closure. Phys. Fluids 14(6), 2011–2014 (2002)

    Article  ADS  Google Scholar 

  37. Brown, P.N., Byrne, G.D., Hindmarsh, A.C.: VODE, a variable-coefficient ODE solver. SIAM J. Sci. Stat. Comput. 10, 1038–1051 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. De Paola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Paola, G., Kim, I.S. & Mastorakos, E. Second-Order Conditional Moment Closure Simulations of Autoignition of an n-heptane Plume in a Turbulent Coflow of Heated Air. Flow Turbulence Combust 82, 455–475 (2009). https://doi.org/10.1007/s10494-008-9183-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-008-9183-x

Keywords

Navigation