Skip to main content
Log in

Pyrethroid resistance in Phytoseiulus macropilis (Acari: Phytoseiidae): cross-resistance, stability and effect of synergists

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Phytoseiulus macropilis Banks (Acari: Phytoseiidae) is an effective predator of Tetranychus urticae Koch (Acari: Tetranychidae). The objectives of this research were to study the stability of fenpropathrin resistance and the cross-resistance relationships with different pyrethroids, and also to evaluate the effect of synergists [piperonyl butoxide (PBO), diethyl maleate (DEM) and S,S,S-tributyl phosphorotrithioate (DEF)] on fenpropathrin resistant and susceptible strains of this predaceous mite. The stability of fenpropathrin resistance was studied under laboratory conditions, using P. macropilis populations with initial frequencies of 75 and 50 % of resistant mites. The percentages of fenpropathrin resistant mites were evaluated monthly for a period of up to 12 months. A trend toward decreased resistance frequencies was observed only during the first 3–4 months. After this initial decrease, the fenpropathrin resistance was shown to be stable, maintaining constant resistance frequencies (around 30 %) until the end of the evaluation period. Toxicity tests carried out using fenpropathrin resistant and susceptible strains of P. macropilis indicated strong positive cross-resistance between fenpropathrin and the pyrethroids bifenthrin and deltamethrin. Bioassays with the synergists DEM, DEF and PBO were also performed. The maximum synergism ratio (SR = LC50 without synergist/LC50 with synergist) detected for the three evaluated synergists (PBO, DEM, DEF) was 5.86 (for DEF), indicating low influence of enzyme detoxification processes in fenpropathrin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • AGROFIT (2015) Sistema de Agrotóxicos Fitossanitários, do Ministério da Agricultura, Pecuária e Abastecimento. http://extranet.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Cited 9 Feb 2015

  • Belliure B, Montserrat M, Magalhães S (2010) Mites as models for experimental evolution studies. Acarologia 50:513–529

    Article  Google Scholar 

  • Bonafos R, Serrano E, Auger P, Kreiter S (2007) Resistance to deltamethrin, lambda-cyhalothrin and chlorpyriphos-ethyl in some populations of Typhlodromus pyri Scheuten and Amblyseius andersoni (Chant) (Acari: Phytoseiidae) from vineyards in the south-west of France. Crop Prot 26:169–172

    Article  CAS  Google Scholar 

  • Busvine JR (1951) Mechanism of resistance to insecticides in houseflies. Nature 168:193–195

    Article  CAS  PubMed  Google Scholar 

  • Caprio MA, Hoy MA (1994) Metapopulation dynamics affect resistance development in the predatory mite, Metaseiulus occidentalis (Acari: Phytoseiidae). J Econ Entomol 87:525–534

    Article  Google Scholar 

  • Croft BA, Van de Baan HE (1988) Ecological and genetic factors influencing evolution of pesticide resistance in tetranychid and phytoseiid mites. Exp Appl Acarol 4:277–300

    Article  CAS  Google Scholar 

  • Croft BA, Whalon ME (1983) The inheritance and persistence of permethrin resistance in the predatory mite, Amblyseius fallacis. Environ Entomol 12:215–218

    Article  CAS  Google Scholar 

  • Dunley JE, Croft BA (1992) Dispersal and gene flow of pesticide resistance traits in phytoseiid and tetranychid mites. Exp Appl Acarol 14:313–325

    Article  Google Scholar 

  • Fadini MAM, Lemos WP, Venzon M, Mourão SA (2004) Herbivoria de Tetranychus urticae Koch (Acari: Tetranychidae) induz defesa direta em morangueiro? Neotrop Entomol 33:293–297

    Article  Google Scholar 

  • Feng YNI, Zhao S, Sun W, Li M, Lu WC, Lin HE (2011) The sodium channel gene in Tetranychus cinnabarinus (Boisduval): identification and expression analysis of a mutation associated with pyrethroid resistance. Pest Manag Sci 67:904–912

    Article  CAS  PubMed  Google Scholar 

  • Finney DJ (1971) Probit Analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Grbić M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbić V, Osborne EJ, Dermauw W, Ngoc PCT, Ortego F et al (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487–492

    Article  PubMed  Google Scholar 

  • Headley JC, Hoy MA (1987) Benefit cost analysis of an integrated management program for almonds. J Econ Entomol 80:555–559

    Article  Google Scholar 

  • Hoy MA (1985) Recent advances in genetics and genetic improvement of the Phytoseiidae. Annu Rev Entomol 30:345–370

    Article  Google Scholar 

  • Hoy MA (1990) Pesticide resistance in arthropod natural enemies: variability and selection responses. In: Roush RT, Tabashnik BE (eds) Pest resistance in arthropods. Chapman and Hall, New York, pp 203–236

    Chapter  Google Scholar 

  • Huffaker CB, Kennet CE (1953) Differential tolerance to parathion in two Typhlodromus predatory on cyclamen mite. J Econ Entomol 46:707–708

    Article  Google Scholar 

  • Li X, Schuler A, Berenbaum M (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231–253

    Article  PubMed  Google Scholar 

  • Martins AJ, Ribeiro CD, Bellinato DF, Peixoto AA, Valle D et al (2012) Effect of insecticide resistance on development, longevity and reproduction of field or laboratory selected Aedes aegypti populations. PLoS One 7:e31889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicastro RL, Sato ME, da Silva MZ (2010) Milbemectin resistance in Tetranychus urticae (Acari: Tetranychidae): selection, stability and cross-resistance to abamectin. Exp Appl Acarol 50:231–241

    Article  CAS  PubMed  Google Scholar 

  • Nicastro RL, Sato ME, Da Silva MZ (2011) Fitness costs associated with milbemectin resistance in the two-spotted spider mite Tetranychus urticae. Int J Pest Manag 57:223–228

    Article  Google Scholar 

  • Oliveira H, Fadini MAM, Venzon M, Rezende D, Rezende F, Palini A (2009) Evaluation of the predatory mite Phytoseiulus macropilis (Acari: Phytoseiidae) as a biological control agent of the two-spotted spider mite on strawberry plants under greenhouse conditions. Exp Appl Acarol 47:275–283

    Article  PubMed  Google Scholar 

  • Omoto C (2003) Avanço na implementação de programas de manejo da resistência de pragas a pesticidas no Brasil. http://www.irac-br.org.br/arquivos/avancosimplprog.doc. Cited 15 Dec 2014

  • Pasay C, Arlian L, Morgan M, Gunning R, Rossiter L, Holt D, Walton S, Beckham S, McCarthy J (2009) The effect of insecticide synergists on the response of scabies mites to pyrethroid acaricides. PLoS Negal Trop Dis 3:e354

    Article  Google Scholar 

  • Poletti M, Omoto C (2003) Resistência de inimigos naturais a pesticidas. Rev Biotecnol Ciência Desenvolv 30:16–26

    Google Scholar 

  • Poletti M, Omoto C (2012) Susceptibility to deltamethrin in the predatory mites Neoseiulus californicus and Phytoseiulus macropilis (Acari: Phytoseiidae) populations in protected ornamental crops in Brazil. Exp Appl Acarol 58:385–393

    Article  CAS  PubMed  Google Scholar 

  • Prasad V (1967) Biology of the predatory mite Phytoseiulus macropilis in Hawaii (Acarina: Phytoseiidae). Ann Entomol Soc Am 60:905–908

    Article  Google Scholar 

  • Raymond M, Berticat C, Weill M, Pasteur N, Chevillon C (2001) Insecticide resistance in the mosquito Culex pipiens: what have we learned about adaptation? Genetica 112–113:287–296

    Article  PubMed  Google Scholar 

  • Reis PR, Toledo MA, Silva FMA (2014) Cyazypyr TM selectivity for three species of phytoseiid for coffee and other relevant agricultural crops in Brazil. Agric Sci 5:298–303

  • Riedl H, Hoying SA (1983) Toxicity and residual activity of fenvalerate to Typhlodromus occidentalis (Acari: Phytoseiidae) and its prey Tetranychus urticae (Acari: Tetranychidae) on pear. Can Entomol 115:807–813

    Article  CAS  Google Scholar 

  • Rivero A, Vezilier J, Weill M, Read AF, Gandon S (2010) Insecticide control of vector-borne diseases: when is insecticide resistance a problem? PLoS Pathog 6:e1001000

    Article  PubMed Central  PubMed  Google Scholar 

  • Robertson JL, Russell RM, Preisler HK, Savin NE (2007) Bioassays with arthropods, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Rosenheim JA, Limburg DD, Colfer RG, Fournier V, Hsu CL, Leonardo TE, Nelson EH (2004) Herbivore population suppression by an intermediate predator, Phytoseiulus macropilis, is insensitive to the presence of an intraguild predator: an advantage of small body size? Oecologia 140:577–585

    Article  PubMed  Google Scholar 

  • Roush RT, McKenzie JA (1987) Ecological genetics of insecticide and acaricide resistance. Annu Rev Entomol 32:361–380

    Article  CAS  PubMed  Google Scholar 

  • Saavedra-Rodríguez S, Garcia GP, Salas IF, Zapata RT, Suárez AEF (2008) Mutación asociada a la resistencia a insecticidas piretroides en el mosquito transmisor de dengue (Aedes aegypti). Ciencia UANL 11:393–402

    Google Scholar 

  • Sato ME, Miyata T, Kawai A, Nakano O (2001) Methidathion resistance mechanisms in Amblyseius womersleyi Schicha (Acari: Phytoseiidae). Pestic Biochem Physiol 69:1–12

    Article  CAS  Google Scholar 

  • Sato ME, da Silva MZ, Gonçalves LR, de Souza Filho MF, Raga A (2002) Toxicidade diferencial de agroquímicos a Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) e Tetranychus urticae Koch (Acari: Tetranychidae) em morangueiro. Neotrop Entomol 31:449–456

    Article  CAS  Google Scholar 

  • Sato ME, Silva MZ, Raga A, Souza Filho MF (2005) Abamectin resistance in Tetranychus urticae Koch (Acari: Tetranychidae): selection, cross-resistance and stability of resistance. Neotrop Entomol 34:991–997

    Article  CAS  Google Scholar 

  • Sawicki RM (1978) Unusual response of DDT-resistant houseflies to carbinol analogues of DDT. Nature 275:443–444

    Article  CAS  PubMed  Google Scholar 

  • Shi MA, Lougarre A, Alies C, Frémaux I, Tang ZH, Stojan J, Fournier D (2004) Acetylcholinesterase alterations reveal the fitness cost of mutations conferring insecticide resistance. BMC Evol Biol 4:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Soderlund DM (1997) Molecular mechanisms of insecticide resistance. In: Sjut V (ed) Molecular mechanisms of resistance to agrochemicals. Springer, Heidelberg, pp 21–56

    Chapter  Google Scholar 

  • Soderlund DM, Bloomquist JR (1990) Molecular mechanisms of insecticide resistance. In: Roush RT, Tabashnik BE (eds) Pesticide resistance in arthropods. Chapman and Hall, New York, pp 58–96

    Chapter  Google Scholar 

  • Soderlund DM, Knipple DC (1999) Knockdown resistance to DDT and pyrethroids in the house fly (Diptera: Muscidae): from genetic trait to molecular mechanism. Ann Entomol Soc Am 92:909–915

    Article  CAS  Google Scholar 

  • Sterk G, Hassan SA, Baillod M, Bakker F, Bigler F, Blümel S, Bogenschütz H, Boller E, Bromand B, Brun J et al (1999) Results of the seventh joint pesticide testing programme carried out by the IOBC/WPRS working group ‘pesticides and beneficial organisms’. Biocontrol 40:99–117

    Article  Google Scholar 

  • Stumpf N, Nauen R (2002) Biochemical markers linked to abamectin resistance in Tetranychus urticae (Acari: Tetranychidae). Pestic Biochem Physiol 72:111–112

    Article  CAS  Google Scholar 

  • Van Leeuwen T, Tirry L (2007) Esterase-mediated bifenthrin resistance in a multi-resistant strain of the two-spotted spider mite, Tetranychus urticae. Pest Manag Sci 63:150–156

    Article  PubMed  Google Scholar 

  • Zhang ZQ (2003) Mites in greenhouse: identification, biology and control. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Zhao Y, Park Y, Adams ME (2000) Functional and evolutionary consequences of pyrethroid resistance mutations in S6 transmembrane segments of a voltage-gated sodium channel. Biochem Biophys Res Commun 278:516–521

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Yi X, Deng Y, Hu M, Zhong G, Wang P (2013) Resistance to fenpropathrin, chlorpyriphos and abamectin in different populations of Amblyseius longispinosus (Acari: Phytoseiidae) from vegetable crops in South China. Biol Control 67:61–65

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank FAPESP (São Paulo Research Foundation) for the funding received for this research (Process # 2012/17972-2). Our thanks also go to CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the scholarship to the first author and to CNPq—Brazil (National Council for Scientific and Technological Development—Brazil) for funding Mario E. Sato’s research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cristina Vitelli Queiroz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Queiroz, M.C.V., Sato, M.E. Pyrethroid resistance in Phytoseiulus macropilis (Acari: Phytoseiidae): cross-resistance, stability and effect of synergists. Exp Appl Acarol 68, 71–82 (2016). https://doi.org/10.1007/s10493-015-9984-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-015-9984-2

Keywords

Navigation