Skip to main content
Log in

The weak solution of an antiplane contact problem for electro-viscoelastic materials with long-term memory

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We study a mathematical model which describes the antiplane shear deformation of a cylinder in frictionless contact with a rigid foundation. The material is assumed to be electro-viscoelastic with long-term memory, and the friction is modeled with Tresca’s law and the foundation is assumed to be electrically conductive. First we derive the classical variational formulation of the model which is given by a system coupling an evolutionary variational equality for the displacement field with a time-dependent variational equation for the potential field. Then we prove the existence of a unique weak solution to the model. Moreover, the proof is based on arguments of evolution equations and on the Banach fixedpoint theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Andreu, J.M. Mazón, M. Sofonea: Entropy solutions in the study of antiplane shear deformations for elastic solids. Math. Models Methods Appl. Sci. 10 (2000), 99–126.

    MathSciNet  MATH  Google Scholar 

  2. R.C. Batra, J. S. Yang: Saint-Venant’s principle in linear piezoelectricity. J. Elasticity 38 (1995), 209–218.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Bisegna, F. Lebon, F. Maceri: The unilateral frictional contact of a piezoelectric body with a rigid support. Contact Mechanics (J.A.C.Martins et al., eds.). Proc. of the 3rd Contact Mechanics International Symposium, Praia da Consolacao, 2001, Solic. Mech. Appl. 103, Kluwer Academic Publishers, Dordrecht, 2002, pp. 347–354.

    MATH  Google Scholar 

  4. A. Borrelli, C.O. Horgan, M.C. Patria: Saint-Venant’s principle for antiplane shear deformations of linear piezoelectric materials. SIAM J. Appl. Math. 62 (2002), 2027–2044.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Campillo, C. Dascalu, I.R. Ionescu: Instability of a periodic system of faults. Geophys. J. Int. 159 (2004), 212–222.

    Article  Google Scholar 

  6. M. Campillo, I.R. Ionescu: Initiation of antiplane shear instability under slip dependent friction. J. Geophys. Res. 102 (1997), 363–371.

    Article  Google Scholar 

  7. Z. Denkowski, S. Migórski, A. Ochal: A class of optimal control problems for piezoelectric frictional contact models. Nonlinear Anal., Real World Appl. 12 (2011), 1883–1895.

    Article  MathSciNet  MATH  Google Scholar 

  8. T.-V. Hoarau-Mantel, A. Matei: Analysis of a viscoelastic antiplane contact problem with slip-dependent friction. Int. J. Appl. Math. Comput. Sci. 12 (2002), 51–58.

    MathSciNet  MATH  Google Scholar 

  9. C.O. Horgan: Anti-plane shear deformations in linear and nonlinear solid mechanics. SIAM Rev. 37 (1995), 53–81.

    Article  MathSciNet  MATH  Google Scholar 

  10. C.O. Horgan: Recent developments concerning Saint-Venant’s principle: a second update. Appl. Mech. Rev. 49 (1996), 101–111.

    Article  MathSciNet  Google Scholar 

  11. C.O. Horgan, K. L. Miller: Antiplane shear deformations for homogeneous and inhomogeneous anisotropic linearly elastic solids. J. Appl. Mech. 61 (1994), 23–29.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Ikeda: Fundamentals of Piezoelectricity. Oxford University Press, Oxford, 1990.

    Google Scholar 

  13. I.R. Ionescu, Ch. Dascalu, M. Campillo: Slip-weakening friction on a periodic system of faults: Spectral analysis. Z. Angew. Math. Phys. 53 (2002), 980–995.

    Article  MathSciNet  MATH  Google Scholar 

  14. I.R. Ionescu, S. Wolf: Interaction of faults under slip-dependent friction. Nonlinear eigenvalue analysis. Math. Methods Appl. Sci. 28 (2005), 77–100.

    Article  MathSciNet  MATH  Google Scholar 

  15. Z. Lerguet, M. Shillor, M. Sofonea: A frictional contact problem for an electroviscoelastic body. Electron. J. Differ. Equ. (electronic only) 2007 (2007), 16 pages.

    Google Scholar 

  16. F. Maceri, P. Bisegna: The unilateral frictionless contact of a piezoelectric body with a rigid support. Math. Comput. Modelling 28 (1998), 19–28.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Matei, V.V. Motreanu, M. Sofonea: A quasistatic antiplane contact problem with slip dependent friction. Adv. Nonlinear Var. Inequal. 4 (2001), 1–21.

    MathSciNet  MATH  Google Scholar 

  18. S. Migórski: Hemivariational inequality for a frictional contact problem in elastopiezoelectricity. Discrete Contin. Dyn. Syst., Ser. B 6 (2006), 1339–1356.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Migórski, A. Ochal, M. Sofonea: Modeling and analysis of an antiplane piezoelectric contact problem. Math. Models Methods Appl. Sci. 19 (2009), 1295–1324.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Migórski, A. Ochal, M. Sofonea: Solvability of dynamic antiplane frictional contact problems for viscoelastic cylinders. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70 (2009), 3738–3748.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Migórski, A. Ochal, M. Sofonea: Weak solvability of antiplane frictional contact problems for elastic cylinders. Nonlinear Anal., Real World Appl. 11 (2010), 172–183.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Migórski, A. Ochal, M. Sofonea: Analysis of a piezoelectric contact problem with subdifferential boundary condition. Proc. R. Soc. Edinb., Sect. A, Math. 144 (2014), 1007–1025.

    Article  MathSciNet  MATH  Google Scholar 

  23. V. Z. Patron, B. A. Kudryavtsev: Electromagnetoelasticity, Piezoelectrics and Electrically Conductive Solids. Gordon & Breach, London, 1988.

    Google Scholar 

  24. M. Sofonea, M. Dalah, A. Ayadi: Analysis of an antiplane electro-elastic contact problem. Adv. Math. Sci. Appl. 17 (2007), 385–400.

    MathSciNet  MATH  Google Scholar 

  25. M. Sofonea, El H. Essoufi: Quasistatic frictional contact of a viscoelastic piezoelectric body. Adv. Math. Sci. Appl. 14 (2004), 613–631.

    MathSciNet  MATH  Google Scholar 

  26. M. Sofonea, C. P. Niculescu, A. Matei: An antiplane contact problem for viscoelastic materials with long-term memory. Math. Model. Anal. 11 (2006), 213–228.

    MathSciNet  MATH  Google Scholar 

  27. Z.-G. Zhou, B. Wang, S.-Y. Du: Investigation of antiplane shear behavior of two collinear permeable cracks in a piezoelectric material by using the nonlocal theory. J. Appl. Mech. 69 (2002), 388–390.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Dalah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derbazi, A., Dalah, M. & Megrous, A. The weak solution of an antiplane contact problem for electro-viscoelastic materials with long-term memory. Appl Math 61, 339–358 (2016). https://doi.org/10.1007/s10492-016-0135-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-016-0135-9

Keywords

MSC 2010

Navigation