Skip to main content
Log in

An efficient recurrent neural network model for solving fuzzy non-linear programming problems

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In this paper, a representation of a recurrent neural network to solve fuzzy non-linear programming (FNLP) problems is given. The motivation of the paper is to design a new effective one-layer structure recurrent neural network model for solving the FNLP. Here, we change a fuzzy non-linear programming problem to a bi-objective problem. Furthermore, the bi-objective problem is reduced to a weighting problem and then the Lagrangian dual and the Karush-Kuhn-Tucker (KKT) optimality conditions are constructed. The simulation results on numerical examples are discussed to demonstrate the performance of our proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Agrawal SK, Fabien BC (1999) Optimization of dynamic systems. Kluwer Academic Publishers, Netherlands

    Book  MATH  Google Scholar 

  2. Avriel M (1976) Nonlinear programming: Analysis and methods englewood cliffs. Prentice-Hall, NJ

    Google Scholar 

  3. Bas E, Uslu V R, Egrioglu E (2016) Robust learning algorithm for multiplicative neuron model artificial neural networks. Expert Systems with Applications

  4. Bazaraa MS, Shetty C, Sherali HD (1979) Nonlinear programming theory and algorithms. John Wiley and Sons, New York

    MATH  Google Scholar 

  5. Bellman RE, Zadeh LA (1970) Decision-making in a fuzzy environment. Manag Sci 17:141–161

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertsekas D (1989) Parallel and distributed computation: Numerical methods englewood cliffs. Prentice-Hall, NJ

    Google Scholar 

  7. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  8. Effati S, Ghomashi A, Nazemi AR (2007) Application of projection neural network in solving convex programming problems. Appl Math Comput 188:1103–1114

    MathSciNet  MATH  Google Scholar 

  9. Effati S, Pakdaman M (2010) Artificial neural network approach for solving fuzzy differential equations. Inf Sci 180:1434–1457

    Article  MathSciNet  MATH  Google Scholar 

  10. Effati S, Pakdaman M, Ranjbar M (2011) A new fuzzy neural network model for solving fuzzy linear programming problems and its applications. Neural Comput & Applic 20:1285–1294

    Article  Google Scholar 

  11. Effati S, Mansoori A, Eshaghnezhad M (2015) An efficient projection neural network for solving bilinear programming problems. Neurocomputing 168(2015):1188–1197

    Article  Google Scholar 

  12. Fatma MA (1998) A differential equation approach to fuzzy non-linear programming problems. Fuzzy Sets Syst 93:57–61

    Article  MathSciNet  MATH  Google Scholar 

  13. Fletcher R (1981) Practical methods of optimization. Wiley, New York

    MATH  Google Scholar 

  14. Friedman M, Ma M, Kandel A (1999) Numerical solution of fuzzy differential and integral equations. Fuzzy Sets Syst 106:35–48

    Article  MathSciNet  MATH  Google Scholar 

  15. Goetschel R, Voxman W (1983) Topological properties of fuzzy numbers. Fuzzy Sets Syst 9:87–99

    Article  MathSciNet  MATH  Google Scholar 

  16. Hopfield JJ, Tank DW (1985) Neural computation of decisions in optimization problems. Biol Cybern 52:141–152

    MATH  Google Scholar 

  17. Huang YC (2002) A novel method to handle inequality constraints for convex programming neural network. Neural Process Lett 16:17–27

    Article  MATH  Google Scholar 

  18. Huang H. -X., Li J. -C., Xiao C. -L. (2015) A proposed iteration optimization approach integrating backpropagation neural network with genetic algorithm. Expert Syst Appl 42(1):146–155

    Article  Google Scholar 

  19. Kennedy MP, Chua LO (1988) Neural networks for nonlinear programming. IEEE Trans Circuits Syst 35:554–562

    Article  MathSciNet  Google Scholar 

  20. Khalil HK (1996) Nonlinear systems Prentice-Hall. Michigan, NJ

    Google Scholar 

  21. Li Z, Xiao H, Yang C, Zhao Y (2015) Model predictive control of nonholonomic chained systems using general projection neural networks optimization. IEEE Trans Syst Man Cybern Syst Hum 45:1313–1321

    Article  Google Scholar 

  22. Li MM, Verma B (2016) Nonlinear curve fitting to stopping power data using RBF neural networks. Expert Syst Appl 45(1):161– 171

    Article  Google Scholar 

  23. Li G, Yan Z, Wang J (2015) A one-layer recurrent neural network for constrained nonconvex optimization. Neural Netw 61:10–21

    Article  MATH  Google Scholar 

  24. Liu Q, Wang J (2015) L1-minimization algorithms for sparse signal reconstruction based on a projection neural network. IEEE Trans Neural Netw Learn Syst 27(3):698–707

    Article  Google Scholar 

  25. Lu J, Fang S. -C. (2001) Solving nonlinear optimization problems with fuzzy relation equation constraints. Fuzzy Sets Syst 119:1–20

    Article  MathSciNet  Google Scholar 

  26. Miao X, Chen J. -S., Ko C. -H. (2014) A smoothed NR neural network for solving nonlinear convex programs with second-order cone constraints. Inf Sci 268(1):255–270

    Article  MathSciNet  MATH  Google Scholar 

  27. Miller RK, Michel A N (1982) Ordinary differential equations. Academic Press

  28. Miettinen K M (1999) Non-linear Multiobjective Optimization. Kluwer Academic Publishers

  29. Nanda S, Kar K (1992) Convex fuzzy mapping. Fuzzy Sets Syst 48:129–132

    Article  MathSciNet  MATH  Google Scholar 

  30. Nazemi AR, Effati S (2013) An application of a merit function for solving convex programming problems. Comput Ind Eng 66:212–221

    Article  Google Scholar 

  31. Nazemi AR, Sharifi E (2013) Solving a class of geometric programming problems by an efficient dynamic model. Commun Nonlinear Sci Numer Simul 18:692–709

    Article  MathSciNet  MATH  Google Scholar 

  32. Negoita CV (1970) Fuzziness in management. OPSA/TIMS, Miami

    Google Scholar 

  33. Nocedal J, Wright S (2006) Numerical optimization, 2nd ed. Springer-Verlag, Berlin, NewYork

    MATH  Google Scholar 

  34. Panigrahi M, Panda G, Nanda S (2008) Convex fuzzy mapping with differentiability and its application in fuzzy optimization. Eur J Oper Res 185(1):47–62

    Article  MathSciNet  MATH  Google Scholar 

  35. Ortega T M, Rheinboldt W C (1970) Iterative solution of nonlinear equations in several variables. Academic, New York

    MATH  Google Scholar 

  36. Rao S (2009) Engineering optimization: Theory and practice, 4th edition. John Wiley & Sons, Hoboken, New Jersey

    Book  Google Scholar 

  37. Syau Y -R (1999) On convex and concave fuzzy mappings. Fuzzy Sets Syst 103:163–168

    Article  MathSciNet  MATH  Google Scholar 

  38. Syau Y-R (2003) (Φ12)-convex fuzzy mappings. Fuzzy Sets Syst 138:617–625

    Article  MathSciNet  Google Scholar 

  39. Tang J, Wang D (1996) Modelling and Optimization for a Type of fuzzy Nonlinear Programming Problems in Manufacturing Systems, Decision and Control, 1996. Proceedings of the 35th IEEE Conference on 4:4401–4405

    Google Scholar 

  40. Vasant P (2013) Hybrid LS-SA-PS methods for solving fuzzy non-linear programming problems. Math Comput Model 57:180–188

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang G, Wu C (2003) Directional derivatives and sub-differential of convex fuzzy mappings and application in convex fuzzy programming. Fuzzy Sets Syst 138:559–591

    Article  MATH  Google Scholar 

  42. Wang Y, Cheng L, Hou Z, Yu J, Tan M (2015) Optimal formation of multirobot systems based on a recurrent neural network. IEEE Trans Neural Netw Learn Syst 27:322–333

    Article  MathSciNet  Google Scholar 

  43. Wu H -C (2004) Evaluate fuzzy optimization problems based on biobjective programming problems. Comput Math Appl 47:893–902

    Article  MathSciNet  MATH  Google Scholar 

  44. Wu H -C (2007) Duality theorems and saddle point optimality conditions in fuzzy nonlinear programming problems based on different solution concepts. Fuzzy Sets Syst 158:1588–1607

    Article  MathSciNet  MATH  Google Scholar 

  45. Wu C -W, Liao M -Y (2014) Fuzzy nonlinear programming approach for evaluating and ranking process yields with imprecise data. Fuzzy Sets Syst 246:142–155

    Article  MathSciNet  MATH  Google Scholar 

  46. Xia Y, Feng G, Wang J (2004) A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations. Neural Netw 17:1003–1015

    Article  MATH  Google Scholar 

  47. Yang Y, Xu X (2007) The projection neural network for solving convex nonlinear programming. In: Huang D -S, Heutte L, Loog M (eds) ICIC 2007, LNAI, vol 4682. Springer-Verlag, Heidelberg, pp 174–81

  48. Zhong Y, Shi Y (2002) Duality in fuzzy multi-criteria and multi-constraint level linear programming: a parametric approach. Fuzzy Sets Syst 132:335–346

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhu H, Huang GH, Guo P (2012) SIFNP: Simulation-Based Interval-Fuzzy nonlinear programming for seasonal planning of stream water quality management. Water Air Soil Pollut 223:2051–2072

    Article  Google Scholar 

  50. Zhu H, Huang GH, Guo P, Qin XS (2009) A fuzzy robust nonlinear programming model for stream water quality management. Water Resour Manage 23:2913–2940

    Article  Google Scholar 

  51. Zimmermann H (1991) J, 2nd ed. Kluwer Academic Publishers, Fuzzy Set Theory and Its Applications

    Google Scholar 

  52. Zimmermann HJ (1983) Fuzzy mathematical programming. Comput Oper Res 10(4):291–298

    Article  MathSciNet  Google Scholar 

  53. Zimmermann HJ (1978) Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst 1:45– 55

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to express our special thanks to the anonymous referees and editor for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohrab Effati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansoori, A., Effati, S. & Eshaghnezhad, M. An efficient recurrent neural network model for solving fuzzy non-linear programming problems. Appl Intell 46, 308–327 (2017). https://doi.org/10.1007/s10489-016-0837-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-016-0837-4

Keywords

Navigation