Skip to main content
Log in

Intelligent control of photovoltaic system using BPSO-GSA-optimized neural network and fuzzy-based PID for maximum power point tracking

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The maximum power point tracking (MPPT) technique is applied in the photovoltaic (PV) systems to achieve the maximum power from a PV panel in different atmospheric conditions and to optimize the efficiency of a panel. A proportional-integral-derivative (PID) controller was used in this study for tracking the maximum power point (MPP). A fuzzy gain scheduling system with optimized rules by subtractive clustering algorithm was employed for tuning the PID controller parameters based on error and error-difference in an online mode. In addition, an Elman-type recurrent neural network (RNN) was used for inverse identification of the PV system and for estimating the solar radiation intensity to determine the MPP voltage. The optimum number of neurons in the single hidden-layer of the RNN was determined by binary particle swarm optimization algorithm. The weights of this RNN were also optimized by using a hybrid method based on the Levenberg-Marquardt algorithm and gravitational search algorithm (GSA). In the proposed fitness function for optimization, both the RNN size and its convergence accuracy were considered. Thus, the algorithm for RNN optimization attempts to minimize both the structural complexity and the mean square error. Simulation results revealed superior performance of GSA in comparison with particle swarm, cuckoo, and grey wolf optimization algorithms. The performance of the proposed MPPT method was evaluated under four different ambient conditions. Our experimental results show that the proposed MPPT method is more efficient than the three competitive methods presented in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Ishaque K, Salam Z (2013) A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition. Renew Sust Energ Rev 19:475–488

    Article  Google Scholar 

  2. Piegari L, Rizzo R (2010) Adaptive perturb and observe algorithm for photovoltaic maximum power point tracking. IET Renewable Power Generation 4:317–328

    Article  Google Scholar 

  3. Ali ANA, Saied MH, Mostafa MZ, Abdel-Moneim TM (2012) A survey of maximum PPT techniques of PV systems. In: Proc IEEE Energytech Conference, Cleveland, pp 1–17

  4. Reisi AR, Moradi MH, Jamasb S (2013) Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review. Renew Sust Energ Rev 19:433–443

    Article  Google Scholar 

  5. Heydari-doostabad H, Keypour R, Khalghani MR, Khooban MH (2013) A new approach in MPPT for photovoltaic array based on extremum seeking control under uniform and non-uniform irradiances. Sol Energy 94:28–36

    Article  Google Scholar 

  6. Li J, Liu Y, Bo X (2012) The research of maximum power point tracking method for photovoltaic system. Lecture Notes in Electrical Engineering 144:629–636

    Article  Google Scholar 

  7. Tian H, Mancilla-David F, Ellis K, Muljadi E, Jenkins P (2013) Determination of the optimal configuration for a photovoltaic array depending on the shading condition. Sol Energy 95:1–12

    Article  Google Scholar 

  8. Harashima F, Inaba H, Kondo S, Takashima N (1987) Microprocessor-controlled SIT inverter for solar energy system. IEEE Trans Ind Electron 34:50–55

    Article  Google Scholar 

  9. Wasynezuk O (1983) Dynamic behavior of a class of PV power systems. IEEE Trans Power Apparatus and Systems 102:3031–3037

    Article  Google Scholar 

  10. Patcharaprakiti N, Premrudeepreechacharn S (2002) Maximum power point tracking using adaptive fuzzy logic control for grid-connected PV system. In: Proc IEEE Power Engineering Society Winter Meeting 1:372–377

    Google Scholar 

  11. Hua CC, Lin JR, Shen CM (1998) Implementation of a DSP-controlled photovoltaic system with peak power tracking. IEEE Trans Ind Electron 45:99–107

    Article  Google Scholar 

  12. Salameh Z, Taylor D (1990) Step-up maximum power point tracker for photovoltaic arrays. Sol Energy 44:57–61

    Article  Google Scholar 

  13. Kuo YC, Liang TJ, Chen JF (2001) Novel maximum-power-point-tracking controller for photovoltaic energy conversion system. IEEE Trans Ind Electron 48:594–601

    Article  Google Scholar 

  14. Liu FR, Duan SX, Liu F, Liu BY, Kang Y (2008) A variable step size INC MPPT method for PV systems. IEEE Trans Ind Electron 55:2622–2628

    Article  Google Scholar 

  15. Hiyama T, Kouzuma S, Imakubo T (1995) Identification of optimal operating point of PV modules using neural network for real time maximum power tracking control. IEEE Trans Energy Conversion 10:360–367

    Article  Google Scholar 

  16. Syafaruddin S, Karatepe E, Hiyama T (2009) Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions. IET Renewable Power Generation 3:239–253

    Article  Google Scholar 

  17. Di Piazza MC, Pucci M, Vitale G (2013) Intelligent power conversion system management for PV generation. Sustainable Energy Technologies and Assessments 2:19–30

    Article  Google Scholar 

  18. Wang X, Ma L, Wang B, Wang T (2013) A hybrid optimization-based recurrent neural network for real-time data prediction. Neurocomputing 120:547–559

    Article  Google Scholar 

  19. Dounis AI, Kofinas P, Alafodimos C, Tseles D (2013) Adaptive fuzzy gain scheduling PID controller for maximum power point tracking of photovoltaic system. Renew Energy 60:202– 214

    Article  Google Scholar 

  20. Mamdani EH (1974) Application of fuzzy algorithms for the control of a simple dynamic plant. Proceedings of IEE 121:1585–1588

    Google Scholar 

  21. Novák V (2005) On fuzzy type theory. Fuzzy Sets Syst 149:235–273

    Article  MATH  Google Scholar 

  22. Zhao ZY, Tomizuka M, Isaka S (1993) Fuzzy gain scheduling of PID controllers. IEEE Trans Syst Man Cybern 23:1392–1398

    Article  Google Scholar 

  23. Ying H, Siler W, Buckley JJ (1990) Fuzzy control theory: A nonlinear case. Automatica 26:513–520

    Article  MathSciNet  MATH  Google Scholar 

  24. Priyono A, Ridwan M, Alias AJ, Atiq R, Rahmat OK, Hassan A, Mohd Ali MA (2005) Generation of fuzzy rules with subtractive clustering. Journal Technology 43:143–153

    Google Scholar 

  25. Rahim NA, Ping HW, Selvaraj J (2013) Photovoltaic module modeling using Simulink/Matlab. Procedia Environmental Sciences 17:537–546

    Article  Google Scholar 

  26. Di Piazza MC, Pucci M, Ragusa A, Vitale G (2008) Fuzzified PI voltage control for boost converters in multi-string PV plants. In: Proceedings of the 34th Annual Conference of the IEEE Industrial Electronics, Orlando, pp 2338–2345

  27. Di Piazza MC, Vitale G (2013) Photovoltaic Sources - Modeling and Emulation. Springer, London

    Book  Google Scholar 

  28. Johansson B (2003) Improved Models for DC-DC Converters, M.Sc. Thesis, Department of Industrial Electrical Engineering and Automation, Lund University

  29. Xiao W, Dunford WG, Palmer PR, Capel A (2007) Regulation of photovoltaic voltage. IEEE Trans Ind Electron 54:1365–1374

    Article  Google Scholar 

  30. Hang CC, Astrom KJ, Ho WK (1991) Refinements of the Ziegler-Nichols tuning formula. Proceedings of IEE, Part D-Control Theory and Applications 138:111–118

    Article  Google Scholar 

  31. Ziegler JG, Nichols NB (1993) Optimum settings for automatic controllers. J Dyn Syst Meas Control 115:220–222

    Article  Google Scholar 

  32. Gawthrop PJ, Nomikos PE (1990) Automatic tuning of commercial PID controllers for single-loop and multiloop applications. IEEE Control System Magazine 10:34–42

    Article  Google Scholar 

  33. Panda A, Pathak MK, Srivastava SP (2011) Fuzzy intelligent controller for the maximum power point tracking of a photovoltaic module at varying atmospheric conditions. Journal of Energy Technologies and Policy 1:18–27

    Google Scholar 

  34. Chaiyatham T, Ngamroo I (2014) Improvement of power system transient stability by PV farm with fuzzy gain scheduling of PID controller. IEEE Systems Journal:1–8. doi:10.1109/JSYST.2014.2347393

  35. Chiu S (1994) Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems 2:267–278

    Google Scholar 

  36. Demirli K, Muthukumaran P (2001) Higher order fuzzy system identification using subtractive clustering. Journal of Intelligent and Fuzzy Systems 9:129–158

    Google Scholar 

  37. Elman JL (1990) Finding structure in time. Cogn Sci 14:179–211

    Article  Google Scholar 

  38. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: A gravitational search algorithm. Inf Sci 179:2232–2248

    Article  MATH  Google Scholar 

  39. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp 1942–1948

  40. Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: Proceedings of the International Conference on Systems, Man and Cybernetics, pp 4104–4108

  41. Wu G, Qiu D, Yu Y, Pedrycz W, Ma M, Li H (2014) Superior solution guided particle swarm optimization combined with local search techniques. Expert Syst Appl 41:7536–7548

    Article  Google Scholar 

  42. Shin Y-B, Kita E (2014) Search performance improvement of particle swarm optimization by second best particle information. Appl Math Comput 246:346–354

    Article  MathSciNet  Google Scholar 

  43. Yu X, Zhang X (2014) Enhanced comprehensive learning particle swarm optimization. Appl Math Comput 242:265–276

    Article  MathSciNet  Google Scholar 

  44. Wang H, Sun H, Li C, Rahnamayan S, Pan J-S (2013) Diversity enhanced particle swarm optimization with neighborhood search. Inf Sci 223:119–135

    Article  MathSciNet  Google Scholar 

  45. Li X, Yao X (2012) Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans Evol Comput 16: 210–224

    Article  Google Scholar 

  46. Wang H, Zhao X, Wang K, Xia K, Tu X (2014) Cooperative velocity updating model based particle swarm optimization. Appl Intell 40:322–342

    Article  Google Scholar 

  47. Mirjalili SA, Lewis A (2013) S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm and Evolutionary Computation 9:1–14

    Article  Google Scholar 

  48. Sheikhan M (2014) Generation of suprasegmental information for speech using a recurrent neural network and binary gravitational search algorithm for feature selection. Appl Intell 40:772–790

    Article  Google Scholar 

  49. Rajabioun R (2011) Cuckoo optimization algorithm. Appl Soft Comput 11:5508–5518

    Article  Google Scholar 

  50. http://www.mathworks.com/matlabcentral/fileexchange/35635-cuckoo-optimization-algorithm

  51. Mirjalili SA, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  52. http://www.mathworks.com/matlabcentral/fileexchange/44974-grey-wolf-optimizer--gwo-

  53. Murtaza A, Chiaberge M, De Giuseppe M, Boero D (2014) A duty cycle optimization based hybrid maximum power point tracking technique for photovoltaic systems. Electrical Power and Energy Systems 59:141–154

    Article  Google Scholar 

  54. Moradi MH, Reisi AR (2011) A hybrid maximum power point tracking method for photovoltaic systems. Sol Energy 85:2965–2976

    Article  Google Scholar 

  55. Rashedi E, Nezamabadi-pour H, Saryazdi S (2010) BGSA: Binary gravitational search algorithm. Nat Comput 9:727–745

    Article  MathSciNet  MATH  Google Scholar 

  56. Subrahmanya N, Shin YC (2010) Constructive training of recurrent neural networks using hybrid optimization. Neurocomputing 73:2624–2631

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Sheikhan.

Additional information

Compliance with Ethical Standards

The authors declare no potential conflict of interest in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azali, S., Sheikhan, M. Intelligent control of photovoltaic system using BPSO-GSA-optimized neural network and fuzzy-based PID for maximum power point tracking. Appl Intell 44, 88–110 (2016). https://doi.org/10.1007/s10489-015-0686-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-015-0686-6

Keywords

Navigation