Skip to main content
Log in

Changes in pCO2, Symptoms, and Lung Function of Asthma Patients During Capnometry-assisted Breathing Training

  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

Abstract

In a recent pilot study with asthma patients we demonstrated beneficial outcomes of a breathing training using capnometry biofeedback and paced breathing assistance to increase pCO2 levels and reduce hyperventilation. Here we explored the time course changes in pCO2, respiration rate, symptoms and lung function across treatment weeks, in order to determine how long training needs to continue. We analyzed in eight asthma patients whether gains in pCO2 and reductions in respiration rate achieved in home exercises with paced breathing tapes followed a linear trend across the 4-week treatment period. We also explored the extent to which gains at home were manifest in weekly training sessions in the clinic, in terms of improvement in symptoms and spirometric lung function. The increases in pCO2 and respiration rate were linear across treatment weeks for home exercises. Similar increases were seen for in-session measurements, together with gradual decreases in symptoms from week to week. Basal lung function remained stable throughout treatment. With our current protocol of paced breathing and capnometry-assisted biofeedback at least 4 weeks are needed to achieve a normalization of pCO2 levels and reduction in symptoms in asthma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Benchetrit, G. (2000). Breathing pattern in humans: Diversity and individuality. Respiration Physiology, 122, 123–129. doi:10.1016/S0034-5687(00)00154-7.

    Article  PubMed  Google Scholar 

  • Bernardi, L., Porta, C., Spicuzza, L., et al. (2002). Slow breathing increases arterial baroreflex sensitivity in patients with chronic heart failure. Circulation, 105, 143–145. doi:10.1161/hc0202.103311.

    Article  PubMed  Google Scholar 

  • Bruton, A., & Holgate, S. T. (2005). Hypocapnia and asthma: A mechanism for breathing retraining?. Chest, 127, 1808–1811. doi:10.1378/chest.127.5.1808.

    Article  PubMed  Google Scholar 

  • Bruton, A., & Lewith, G. T. (2005). The Buteyko breathing technique for asthma: A review. Complementary Therapies in Medicine, 13, 41–46. doi:10.1016/j.ctim.2005.01.003.

    Article  PubMed  Google Scholar 

  • Butler, J., Caro, C. G., Alcala, R., et al. (1960). Physiological factors affecting airway resistance in normal subjects and in patients with obstructive respiratory disease. The Journal of Clinical Investigation, 39, 584–591. doi:10.1172/JCI104071.

    Article  PubMed  Google Scholar 

  • Clarke, P. S., & Gibson, J. R. (1980). Asthma hyperventilation and emotion. Australian Family Physician, 9, 715–719.

    PubMed  Google Scholar 

  • Del Pozo, J. M., Gevirtz, R. N., Scher, B., et al. (2004). Biofeedback treatment increases heart rate variability in patients with known coronary artery disease. American Heart Journal, 147, E11. doi:10.1016/j.ahj.2003.08.013.

    Article  PubMed  Google Scholar 

  • Fried, R. (1993). The psychology and physiology of breathing. New York: Plenum Press.

  • Giardino, N. D., Chan, L., Borson, S., et al. (2004). Combined heart rate variability and pulse oximetry biofeedback for chronic obstructive pulmonary disease: Preliminary findings. Applied Psychophysiology and Biofeedback, 29, 121–133. doi:10.1023/B:APBI.0000026638.64386.89.

    Article  PubMed  Google Scholar 

  • Herxheimer, H. (1946). Hyperventilation asthma. Lancet, 1, 83–87. doi:10.1016/S0140-6736(46)91225-1.

    Article  Google Scholar 

  • Hida, W., Arai, M., Shindoh, C., Liu, Y. N., Sasaki, H., & Takishima, T. (1984). Effect of inspiratory flow rate on bronchomotor tone in normal and asthmatic subjects. Thorax, 39, 86–92.

    Google Scholar 

  • Hofmann, S. G., Schultz, S., Meuret, A. E., et al. (2006). Sudden gains during therapy of social phobia. Journal of Consulting and Clinical Psychology, 74, 687–697. doi:10.1037/0022-006X.74.4.687.

    Article  PubMed  Google Scholar 

  • Hormbrey, J., Jacobi, M. S., Patil, C. P., et al. (1988). CO2 response and pattern of breathing in patients with symptomatic hyperventilation, compared to asthmatic and normal subjects. The European Respiratory Journal, 1, 846–851.

    PubMed  Google Scholar 

  • Joseph, C. N., Porta, C., Casucci, G., Casiraghi, N., Maffeis, M., Rossi, M., et al. (2005). Slow breathing improves arterial baroreflex sensitivity and decreases blood pressure in essential hypertension. Hypertension, 46, 714–718.

    Google Scholar 

  • Karavidas, M. K., Lehrer, P. M., Vaschillo, E., et al. (2007). Preliminary results of an open label study of heart rate variability biofeedback for treatment of major depression. Applied Psychophysiology and Biofeedback, 32, 19–30. doi:10.1007/s10484-006-9029-z.

    Article  PubMed  Google Scholar 

  • Lehrer, P., Carr, R. E., Smetankine, A., et al. (1997). Respiratory sinus arrhythmia versus neck/trapezius emg and incentive inspirometry biofeedback for asthma: A pilot study. Applied Psychophysiology and Biofeedback, 22, 95–109. doi:10.1023/A:1026224211993.

    Article  PubMed  Google Scholar 

  • Lehrer, P. M., Vaschillo, E., Vaschillo, B., et al. (2004). Biofeedback treatment for asthma. Chest, 126, 352–361. doi:10.1378/chest.126.2.352.

    Article  PubMed  Google Scholar 

  • Ley, R. (1991). The efficacy of breathing retraining and the centrality of hyperventilation in panic disorder: A reinterpretation of experimental findings. Behaviour Research and Therapy, 29, 301–304. doi:10.1016/0005-7967(91)90121-I.

    Article  PubMed  Google Scholar 

  • Lutchen, K. R., Jensen, A., Atileh, H., et al. (2001). Airway constriction pattern is a central component of asthma severity: The role of deep inspirations. American Journal of Respiratory and Critical Care Medicine, 164, 207–215.

    PubMed  Google Scholar 

  • McFadden, E. R., Jr, & Gilbert, I. A. (1994). Exercise-induced asthma. The New England Journal of Medicine, 330, 1362–1367. doi:10.1056/NEJM199405123301907.

    Article  PubMed  Google Scholar 

  • Meuret, A. E., Wilhelm, F. H., & Roth, W. T. (2001). Respiratory biofeedback-assisted therapy in panic disorder. Behavior Modification, 25, 584–605. doi:10.1177/0145445501254006.

    Article  PubMed  Google Scholar 

  • Meuret, A. E., Wilhelm, F. H., Ritz, T., et al. (2003). Breathing training in panic disorder treatment: Useful intervention or impediment to therapy? Behavior Modification, 27, 731–754. doi:10.1177/0145445503256324.

    Article  PubMed  Google Scholar 

  • Meuret, A. E., Wilhelm, F. H., & Roth, W. T. (2004). Respiratory feedback for treating panic disorder. Journal of Clinical Psychology, 60, 197–207. doi:10.1002/jclp.10245.

    Article  PubMed  Google Scholar 

  • Meuret, A. E., Ritz, T., Dahme, B., et al. (2005). Therapeutic use of ambulatory capnometry. In J. S. Gravenstein, M. Jaffe, & D. Paulus (Eds.), Capnography. Clinical applications. Cambridge: Cambridge University Press.

    Google Scholar 

  • Meuret, A. E., Ritz, T., Wilhelm, F. H., Roth, W. T., et al. (2007). Targeting pCO2 in asthma: Pilot evaluation of a capnometry-assisted breathing training. Applied Psychophysiology and Biofeedback, 32, 99–109. doi:10.1007/s10484-007-9036-8.

    Article  PubMed  Google Scholar 

  • Meuret, A. E., Wilhelm, F. H., Ritz, T., et al. (2008). Feedback of end-tidal pCO2 as a therapeutic approach for panic disorder. Journal of Psychiatric Research, 42, 560–568. doi:10.1016/j.jpsychires.2007.06.005.

    Article  PubMed  Google Scholar 

  • Myrtek, M. (1984). Constitutional psychophysiology. Research in review. Orlando, FL: Academic Press.

    Google Scholar 

  • National Heart Lung and Blood Institute. (1997). Expert panel report 2: Guidelines for the diagnosis and management of asthma. National asthma education and prevention program. Washington: U.S Department of Health and Human Services.

    Google Scholar 

  • O’Cain, C. F., Hensley, M. J., McFadden, E. R., Jr, et al. (1979). Pattern and mechanism of airway response to hypocapnia in normal subjects. Journal of Applied Physiology, 47, 8–12.

    PubMed  Google Scholar 

  • Osborne, C. A., O’Connor, B. J., Lewis, A., et al. (2000). Hyperventilation and asymptomatic chronic asthma. Thorax, 55, 1016–1022. doi:10.1136/thorax.55.12.1016.

    Article  PubMed  Google Scholar 

  • Ritz, T., & Roth, W. T. (2003). Behavioral interventions in asthma: Breathing training. Behavior Modification, 27, 710–730. doi:10.1177/0145445503256323.

    Article  PubMed  Google Scholar 

  • Ritz, T., Kullowatz, A., Bobb, C., et al. (2008a). Psychological triggers and symptoms of hyperventilation in asthma. Annals of Allergy, Asthma & Immunology, 100, 426–432.

    Article  Google Scholar 

  • Ritz, T., Rosenfield, D., Meuret, A. E., et al. (2008b). Hyperventilation symptoms are linked to a lower quality of life in asthma patients. Annals of Behavioral Medicine, 35, 97–104.

    PubMed  Google Scholar 

  • Sargunaraj, D., Lehrer, P. M., Hochron, S. M., et al. (1996). Cardiac rhythm effects of 125-Hz paced breathing through a resistive load: Implications for paced breathing therapy and the polyvagal theory. Biofeedback and Self-Regulation, 21, 131–147. doi:10.1007/BF02284692.

    Article  PubMed  Google Scholar 

  • Schein, M. H., Gavish, B., Herz, M., et al. (2001). Treating hypertension with a device that slows and regularises breathing: A randomised, double-blind controlled study. Journal of Human Hypertension, 15, 271–278. doi:10.1038/sj.jhh.1001148.

    Article  PubMed  Google Scholar 

  • Shea, S. A., Walter, J., Murphy, K., et al. (1987). Evidence for individuality of breathing patterns in resting healthy man. Respiration Physiology, 68, 331–344. doi:10.1016/S0034-5687(87)80018-X.

    Article  PubMed  Google Scholar 

  • Steen, N., Hutchinson, A., McColl, E., et al. (1994). Development of a symptom based outcome measure for asthma. BMJ (Clinical Research Ed.), 309, 1065–1068.

    Google Scholar 

  • Sterling, G. M. (1968). The mechanism of bronchoconstriction due to hypocapnia in man. Clinical Science, 34, 277–285.

    PubMed  Google Scholar 

  • Tang, T. Z., & DeRubeis, R. J. (1999). Sudden gains and critical sessions in cognitive behavioral therapy for depression. Journal of Consulting and Clinical Psychology, 67, 894–904.

    Google Scholar 

  • van den Elshout, F. J. J., van Herwaarden, C. L. A., & Folgering, H. T. M. (1991). Effects of hypercapnia and hypocapnia on respiratory resistance in normal and asthmatic subjects. Thorax, 46, 28–32.

    Article  PubMed  Google Scholar 

  • Wientjes, C. J. (1992). Respiration in psychophysiology: Methods and applications. Biological Psychology, 34, 179–203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ritz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritz, T., Meuret, A.E., Wilhelm, F.H. et al. Changes in pCO2, Symptoms, and Lung Function of Asthma Patients During Capnometry-assisted Breathing Training. Appl Psychophysiol Biofeedback 34, 1–6 (2009). https://doi.org/10.1007/s10484-008-9070-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10484-008-9070-1

Keywords

Navigation