Skip to main content
Log in

Theoretical approach to one-dimensional detonation instability

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Detonation instability is a fundamental problem for understanding the micro-behavior of a detonation front. With the theoretical approach of shock dynamics, detonation instability can be mathematically described as a second-order ordinary difference equation. A one-dimensional detonation wave can be modelled as a type of oscillators. There are two different physical mechanisms controlling the behaviors of a detonation. If the shock Mach number is smaller than the equilibrium Mach number, the fluid will reach the sonic speed before the end of the chemical reaction. Then, thermal chock occurs, and the leading shock becomes stronger. If the shock Mach number is larger than the equilibrium Mach number, the fluid will be subsonic at the end of the chemical reaction. Then, the downstream rarefaction waves propagate upstream, and weaken the leading shock. The above two mechanisms are the basic recovery forces toward the equilibrium state for detonation sustenance and propagation. The detonation oscillator concept is helpful for understanding the oscillating and periodic behaviors of detonation waves. The shock dynamics theory of detonation instability gives a description of the feedback regime of the chemical reaction, which causes variations of the leading shock of the detonation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

sonic speed

E a :

chemical activation energy

k :

chemical rate factor

L CJ :

reaction zone length in the Chapman-Jouguet (CJ) state

M :

moving Mach number of leading shock

M e :

equilibrium Mach number of leading shock

p :

pressure

Q :

chemical heat

R :

gas constant

S :

chemical reaction source term

t :

time

u :

velocity

x :

distance from shock position to its equilibrium state

ρ :

density

γ :

specific heat ratio

λ :

chemical reaction progress

μ :

function of M and γ

ω :

chemical reaction rate

ν :

reaction order

References

  1. Gulhan, A. and Beylich, A. E. Detonation wave phenomena in bubbled liquid. AIP Conference Proceedings, 208, 825–829 (1990)

    Article  Google Scholar 

  2. Petrone, F. J. Validity of the classical detonation wave structure for condensed explosives. Physics of Fluids, 11, 1473–1478 (1968)

    Article  MATH  Google Scholar 

  3. Noeel, C., Busegnies, Y., Papalexandris, M. V., and Goriely, S. Hydrodynamical simulations of detonations in superbursts. AIP Conference Proceedings, 1016, 418–420 (2008)

    Article  Google Scholar 

  4. Larson, D. B. and Sisemore, C. J. A peak stress gauge for determining the yield of underground nuclear detonations. Journal of Applied Physics, 39, 5609–5612 (1968)

    Article  Google Scholar 

  5. Duff, R. E. Investigation of spinning detonation and detonation stability. Physics of Fluids, 4, 1427–1433 (1961)

    Article  MATH  Google Scholar 

  6. Wang, C., Jiang, Z. L., and Gao, Y. L. Half-cell law of regular cellular detonation. Chinese Physics Letters, 25, 3704–3707 (2008)

    Article  Google Scholar 

  7. Wang, C., Jiang, Z. L., Hu, Z. M., and Han, G. L. Numerical investigation on evolution of cylindrical cellular detonation. Applied Mathematics and Mechanics (English Edition), 29(11), 1487–1494 (2008) DOI 10.1007/s10483-008-1109-y

    Article  MATH  Google Scholar 

  8. Jiang, Z. L., Han, G. L., Wang, C., and Zhang, F. Self-organized generation of transverse waves in diverging cylindrical detonations. Combustion and Flame, 156, 1653–1661 (2009)

    Article  Google Scholar 

  9. Pintgen, F., Eckett, C., Austin, J., and Shepherd, J. Direct observations of reaction zone structure in propagating detonations. Combustion and Flame, 133, 211–229 (2003)

    Article  Google Scholar 

  10. Ng, H. D. and Zhang, F. Shock Wave Science and Technology Reference Library, Springer-Verlag, Heidelberg, 107–212 (2012)

    Book  Google Scholar 

  11. Lee, J. H. S. Dynamic parameters of gaseous detonations. Annual Review of Fluid Mechanics, 16, 311–336 (1982)

    Article  Google Scholar 

  12. Abouseif, G. and Toong, T. Theory of unstable detonation. Combustion and Flame, 45, 67–94 (1982)

    Article  Google Scholar 

  13. Erpenbeck, J. J. Stability of steady-state equilibrium detonations. Physics of Fluids, 5, 604–614 (1962)

    Article  MathSciNet  Google Scholar 

  14. Erpenbeck, J. J. Stability of idealized one reaction detonations. Physics of Fluids, 7, 684–696 (1964)

    Article  MATH  Google Scholar 

  15. Lee, H. and Stewart, D. Calculation of linear detonation instability: one-dimensional instability of planar detonation. Journal of Fluid Mechanics, 216, 103–132 (1990)

    Article  MATH  Google Scholar 

  16. Fickett, W. and Wood, W. W. Flow calculations for pulsating one-dimensional detonations. Physics of Fluids, 9, 903–916 (1966)

    Article  Google Scholar 

  17. Abouseif, G. and Toong, T. Theory of unstable detonation. Combustion and Flame, 45, 67–94 (1982)

    Article  Google Scholar 

  18. Lee, J. H. S. and Higgins, A. Comments on criteria for direct initiation of detonation. Philosophical Transactions of the Royal Society, A: Mathematical, Physical and Engineering Sciences, 357, 3503–3521 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ng, H. D. and Lee, J. H. S. Direct initiation of detonation with a multi-step reaction scheme. Journal of Fluid Mechanics, 476, 179–211 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Han, G. L., Jiang, Z. L., and Zhang, D. L. Numerical investigation on the collision between detonations and shocks (in Chinese). Chinese Journal of Theoretical and Applied Mechanics, 40, 154–161 (2008)

    Google Scholar 

  21. Yuan, Y. W. An approximate analytical solution of the cylindrical detonation wave generated by the linear explosion. Applied Mathematics and Mechanics (English Edition), 14(5), 437–440 (1993) DOI 10.1007/BF02453764

    Article  MATH  Google Scholar 

  22. Guo, Y. H., Tian, Z., and Hao, B. T. Implicit TVD schemes applied to gas-droplet detonation calculation. Applied Mathematics and Mechanics (English Edition), 21(6), 725–732 (2000) DOI 10.1007/BF02460192

    Article  MATH  Google Scholar 

  23. Liu, Y. J. and Sheng, W. C. Generalized Riemann problem for gas dynamic combustion. Applied Mathematics and Mechanics (English Edition), 32(8), 1079–1089 (2011) DOI 10.1007/s10483-011-1482-6

    Article  MathSciNet  MATH  Google Scholar 

  24. Kasimov, A. R. and Stewart, D. S. On the dynamics of selfsustained one-dimensional detonations: a numerical study in the shock-attached frame. Physics of Fluids, 16, 3566–3578 (2004)

    Article  MATH  Google Scholar 

  25. Zhang, F., Chue, R., Lee, J. H. S., and Klein, R. A nonlinear oscillator concept for one-dimensional pulsating detonations. Shock Waves, 8, 351–359 (1998)

    Article  MATH  Google Scholar 

  26. Han, Z. Y. and Yin, X. Z. Shock Dynamics, Kluwer Academic Publishers Group, Netherlands (1998)

    MATH  Google Scholar 

  27. Witham, G. On the propagation of shock waves through regions of non-uniform area or flow. Journal of Fluid Mechanics, 84, 337–366 (1958)

    Article  MathSciNet  Google Scholar 

  28. Kasimov, A. R. and Stewart, D. S. On the dynamics of self-sustained one-dimensional detonations: a numerical study in the shock-attached frame. Physics of Fluids, 16, 3566–3578 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Wang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 90916028) and the Innovation Program of the State Key Laboratory of High Temperature Gas Dynamics of Institute of Mechanics, Chinese Academy of Sciences

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Xiang, G. & Jiang, Z. Theoretical approach to one-dimensional detonation instability. Appl. Math. Mech.-Engl. Ed. 37, 1231–1238 (2016). https://doi.org/10.1007/s10483-016-2124-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-016-2124-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation