Skip to main content
Log in

Integral treatment for forced convection heat and mass transfer of nanofluids over linear stretching sheet

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

An integral treatment is proposed for the analysis of the forced convection flow of a nanofluid over a stretching sheet. The obtained results agree well with the numerical results. The results of the presented solution provide an analytic solution, which can be conveniently used in engineering applications. Four types of nanoparticles, i.e., alumina (Al2O3), silicon dioxide (SiO2), silver (Ag), and copper (Cu), dispersed in the base fluid of water are examined. The analytical results show that an increase in the volume fraction of nanoparticles increases the thickness of the thermal boundary layer. The reduced Nusselt number is a decreasing function of the volume fraction of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

(ρc)f :

heat capacity of the fluid

(ρc)p :

effective heat capacity of the nanoparticle material

(ρc p )nf :

heat capacity of the nanofluid

:

condition at infinity

D B :

Brownian diffusion coefficient

d p :

nanoparticle diameter

D T :

thermophoretic diffusion coefficient

g :

gravitational acceleration vector

h :

local heat transfer coefficient

h m :

local mass transfer coefficient

h nf :

heat transfer coefficient of the nanofluid

K :

thermal conductivity

K B :

Boltzmann constant

k f :

thermal conductivity of the fluid

k nf :

nanofluid thermal conductivity

k p :

nanoparticle thermal conductivity

Le :

Lewis number

N B :

Brownian motion parameter

N T :

thermophoresis parameter

Nu :

Nusselt number

P :

pressure

Pr :

Prandtl number

Re x :

local Reynolds number

Sh x :

local Sherwood number

T :

temperature

T :

ambient temperature attained as y tends to infinity

T w :

temperature at the stretching surface

u, v :

velocitycomponents

u w :

velocity of the stretching sheet

w:

condition at the stretching surface

x, y :

Cartesian coordinates

α :

thermal diffusivity

β :

volumetric expansion coefficient of the fluid

Δ:

boundary-layer thickness ratio

δ c :

concentration boundary-layer thickness

δ T :

thermal boundary-layer thickness

τ :

heat capacity ration (ρc)p/(ρc)f

θ(η):

dimensionless temperature profile

μ f :

viscosity of the fluid

μ nf :

viscosity of the nanofluid

ρ f :

fluid density

ρ nf :

nanofluid density

ρ p :

nanoparticle mass density

υ :

kinematic viscosity of the fluid

φ :

nanoparticle volume fraction

φ(η):

dimensionless concentration profile

φ :

ambient concentration attained as y tends to infinity

φ w :

ambient nanoparticle volume fraction

References

  1. Altan, T., Oh, S. I., and Gegel, H. L. Metal Forming: Fundamentals and Applications, ASM International, Ohio (1979)

    Google Scholar 

  2. Fisher, E. G. Extrusion of Plastics, Wiley, New York (1976)

    Google Scholar 

  3. Karwe, M. V. and Jaluria, Y. Numerical simulation of thermal transport associated with a continuous moving flat sheet in materials processing. Journal of Heat Transfer, 119, 612–619 (1991)

    Article  Google Scholar 

  4. Choi, S. U. S. Enhancing thermal conductivity of fluids with nanoparticle. Developments and Applications of Non-Newtonian Flows, 231, 99–105 (1995)

    Google Scholar 

  5. Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., and Thompson, L. J. Anomalously increased effective thermal conductivities containing copper nanoparticles. Applied Physics Letters, 78, 718–720 (2001)

    Article  Google Scholar 

  6. Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., and Grulke, E. A. Anomalous thermal conductivity enhancement on nanotube suspension. Applied Physics Letters, 79, 2252–2254 (2001)

    Article  Google Scholar 

  7. Sun, C. Z., Bai, B. F., Lu, W. Q., and Liu, J. Shear-rate dependent effective thermal conductivity of H2O+SiO2 nanofluid. Physics of Fluids, 25, 052002 (2013)

    Article  Google Scholar 

  8. Sakiadis, B. C. Boundary-layer behavior on a continuous solid surface: II, the boundary layer on a continuous flat surface. AIChE Journal, 7, 221–225 (1961)

    Article  Google Scholar 

  9. Crane, L. J. Flow past a stretching plate. Zeitschrift für Angewandte Mathematik und Physik, 21, 645–647 (1970)

    Article  Google Scholar 

  10. Tsou, F. K., Sparrow, E. M., and Goldstein, R. J. Flow and heat transfer in the boundary layer in the continuous moving surfaces. International Journal of Heat and Mass Transfer, 10, 219–235 (1967)

    Article  Google Scholar 

  11. Magyari, E. and Keller, B. Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. Journal of Physics D: Applied Physics, 32, 577–585 (1999)

    Article  Google Scholar 

  12. Magyari, E. and Keller, B. Heat transfer characteristics of the separation boundary flow induced by a continuous stretching surface. Journal of Physics D: Applied Physics, 32, 2876–2881 (1999)

    Article  Google Scholar 

  13. Wang, C. Y. Free convection on a vertical stretching surface. Journal of Applied Mathematics and Mechanics, 69, 418–420 (1989)

    MATH  Google Scholar 

  14. Gorla, R. S. R. and Sidawi, I. Free convection on a vertical stretching surface with suction and blowing. Applied Scientific Research, 52, 247–257 (1994)

    Article  MATH  Google Scholar 

  15. Khan, W. A. and Pop, I. Boundary-layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass Transfer, 53, 2477–2483 (2010)

    Article  MATH  Google Scholar 

  16. Makinde, O. D. and Aziz, A. Boundary-layer flow of a nanofluids past a stretching sheet. International Journal of Thermal Sciences, 50, 1326–1332 (2011)

    Article  Google Scholar 

  17. Rana, P. and Bhargava, R. Flow and heat transfer of a nanofluids over nonlinearly stretching sheet: a numerical study. Communications in Nonlinear Science and Numerical Simulation, 17, 212–226 (2012)

    Article  MathSciNet  Google Scholar 

  18. Noghrehabadi, A. R., Pourrajab, R., and Ghalambaz, M. Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature. International Journal of Thermal Sciences, 54, 253–261 (2012)

    Article  Google Scholar 

  19. Noghrehabadi, A. R., Ghalambaz, M., and Ghanbarzadeh, A. Heat transfer of magnetohydrodynamic viscous nanofluids over an isothermal stretching sheet. Journal of Thermophysics and Heat Transfer, 26, 686–689 (2012)

    Article  Google Scholar 

  20. Noghrehabadi, A. R., Saffarian, M. R., Pourrajab, R., and Ghalambaz, M. Entropy analysis for nanofluid flow over a stretching sheet in the presence of heat generation/absorption and partial slip. Journal of Mechanical Science and Technology, 27, 927–937 (2013)

    Article  Google Scholar 

  21. Noghrehabadi, A. R., Pourrajab, R., and Ghalambaz, M. Flow and heat transfer of nanofluids over stretching sheet taking into account partial slip and thermal convective boundary conditions. Heat and Mass Transfer, 49, 1357–1366 (2013)

    Article  Google Scholar 

  22. Bejan, A. Convection Heat Transfer, Wiley, New York (2004)

    Google Scholar 

  23. Oztop, H. F. and Abu-Nada, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow, 29, 1326–1336 (2008)

    Article  Google Scholar 

  24. Kefayati, G. H., Hosseinzadeh, S. F., Gorji-Bandpy, M., and Sajjadi, H. Lattice Boltzman solution of natural convection in tall enclosures using water/SiO2 nanofluid. International Communications in Heat and Mass Transfer, 38, 798–805 (2011)

    Article  Google Scholar 

  25. Buongiorno, J. Convective transport in nanofluids. Journal of Heat Transfer, 128, 240–250 (2006)

    Article  Google Scholar 

  26. Brinkman, H. C. The viscosity of concentrated suspensions and solutions. Journal of Chemical Physics, 20, 571–581 (1952)

    Article  Google Scholar 

  27. Khanafer, K. and Vafai, K. A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer, 54, 4410–4428 (2011)

    Article  MATH  Google Scholar 

  28. Yacob, N. A., Ishak, A., Pop, I., and Vajravelu, K. Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluids. Nanoscale Research Letters, 6, 314–321 (2011)

    Article  Google Scholar 

  29. Maxwell, J. C. A. Treatise on Electricity and Magnetism, 2nd ed., Clarendon Press, Oxford (1881)

    Google Scholar 

  30. Buongiorno, J., Venerus, D. C., Prabhat, N., McKrell, T., Townsend, J., Christianson, R., and Leong, K. C. A benchmark study on the thermal conductivity of nanofluids. Journal of Applied Physics, 106, 094312 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Noghrehabadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noghrehabadi, A., Salamat, P. & Ghalambaz, M. Integral treatment for forced convection heat and mass transfer of nanofluids over linear stretching sheet. Appl. Math. Mech.-Engl. Ed. 36, 337–352 (2015). https://doi.org/10.1007/s10483-015-1919-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-015-1919-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation