Skip to main content
Log in

Stochastic response analysis of noisy system with non-negative real-power restoring force by generalized cell mapping method

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The stochastic response of a noisy system with non-negative real-power restoring force is investigated. The generalized cell mapping (GCM) method is used to compute the transient and stationary probability density functions (PDFs). Combined with the global properties of the noise-free system, the evolutionary process of the transient PDFs is revealed. The results show that stochastic P-bifurcation occurs when the system parameter varies in the response analysis and the stationary PDF evolves from bimodal to unimodal along the unstable manifold during the bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crandall, S. H. Perturbation techniques for random vibration of nonlinear systems. The Journal of the Acoustical Society of America, 35, 1700–1705 (1963)

    Article  MathSciNet  Google Scholar 

  2. Roberts, J. B. and Spanos, P. D. Stochastic averaging: an approximate method of solving random vibration problems. International Journal of Non-Linear Mechanics, 21, 111–134 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Zhu, W. Q. and Lin, Y. K. Stochastic averaging of energy envelope. Journal of Engineering Mechanics, 117, 1890–1905 (1991)

    Article  Google Scholar 

  4. Pradlwarter, H. J. and Schuëller, G. I. On advanced Monte Carlo simulation procedures in stochastic structural dynamics. International Journal of Non-Linear Mechanics, 32, 735–744 (1997)

    Article  MATH  Google Scholar 

  5. Naess, A. and Moe, V. Efficient path integration method for nonlinear dynamics system. Probabilistic Engineering Mechanics, 15, 221–231 (2000)

    Article  Google Scholar 

  6. Kumar, P. and Narayanan, S. Modified path integral solution of Fokker-Planck equation: response and bifurcation of nonlinear systems. Journal of Computational and Nonlinear Dynamics, 5, 011004 (2010)

    Article  Google Scholar 

  7. Xu, Y., Li, Y. G., and Liu, D. Response of fractional oscillators with viscoelastic term under random excitation. Journal of Computational and Nonlinear Dynamics, 9, 031015 (2014)

    Article  Google Scholar 

  8. Liu, D., Xu, W., and Xu, Y. Stochastic response of an axially moving viscoelastic beam with fractional order constitutive relation and random excitations. Acta Mechanica Sinica, 29, 443–451 (2013)

    Article  MathSciNet  Google Scholar 

  9. Spanos, P. D., Sofi, A., and DiPaola, M. Nonstationary response envelope probability densities of nonlinear oscillators. Journal of Applied Mechanics, 74, 315–324 (2007)

    Article  MATH  Google Scholar 

  10. Jin, X. L., Huang, Z. L., and Leung, Y. T. Nonstationary probability densities of strongly nonlinear single-degree-of-freedom oscillators subject to modulated white noise excitation. Applied Mathematics and Mechanics (English Edition), 32(11), 1389–1398 (2011) DOI 10.1007/s10483-011-1509-7

    Article  MATH  MathSciNet  Google Scholar 

  11. Zhang, X. F., Zhang, Y. M., Pandey, M. D., and Zhao, Y. E. Probability density function for stochastic response of non-linear oscillation system under random excitation. International Journal of Non-Linear Mechanics, 45, 800–808 (2010)

    Article  Google Scholar 

  12. Zhu, W. Q., Lu, M. Q., and Wu, Q. T. Stochastic jump and bifurcation of a Duffing oscillator under narrowband excitation. Journal of Sound and Vibration, 165, 285–304 (1993)

    Article  MATH  Google Scholar 

  13. Rong, H. W., Meng, G., Wang, X. D., Xu, W., and Fang, T. Reponse statistic of strongly non-linear oscillator to combined deterministic and random excitation. International Journal of Non-Linear Mechanics, 39, 871–878 (2004)

    Article  MATH  Google Scholar 

  14. Chen, L. C. and Zhu, W. Q. Stochastic jump and bifurcation of Duffing oscillator with fractional derivative damping under combined harmonic and white noise excitations. International Journal of Non-Linear Mechanics, 46, 1324–1329 (2011)

    Article  Google Scholar 

  15. Xu, Y., Gu, R. C., Zhang, H. Q., Xu, W., and Duan, J. Q. Stochastic bifurcations in a bistable Duffing-van der Pol oscillator with colored noise. Physical Review E, 83, 056215 (2011)

    Article  Google Scholar 

  16. Arnold, L. Random Dynamical Systems, Springer-Verlag, New York, 465–476 (1998)

    MATH  Google Scholar 

  17. Hsu, C. S. A generalized theory of cell-to-cell mapping for nonlinear dynamical systems. Journal of Applied Mechanics, 48, 634–642 (1981)

    Article  MATH  Google Scholar 

  18. Hong, L. and Xu, J. X. Crises and chaotic transients studied by the generalized cell mapping digraph method. Physics Letters A, 262, 361–375 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Xu, W., He, Q., and Li, S. The cell mapping method for approximating the invariant manifolds. IUTAM Symposium on Dynamics and Control of Nonlinear Systems with Uncertainty (eds. Hu, H. Y. and Kreuzer, E.), Springer, New York, 117–126 (2007)

    Chapter  Google Scholar 

  20. Zou, H. L. and Xu, J. X. Improved generalized cell mapping for global analysis of dynamical systems. Science in China Series E: Technological Sciences, 52, 787–800 (2009)

    Article  MATH  Google Scholar 

  21. Gan, C. B. and Lei, H. A new procedure for exploring chaotic attractors in nonlinear dynamical systems under random excitations. Acta Mechanica Sinica, 27, 593–601 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hong, L. and Sun, J. Q. Bifurcations of forced oscillators with fuzzy uncertainties by the generalized cell mapping method. Chaos, Solitons & Fractals, 27, 895–904 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. He, Q., Xu, W., Rong, H. W., and Fang, T. Stochastic bifurcation in Duffing-van der Pol oscillators. Physica A, 338, 319–334 (2004)

    Article  MathSciNet  Google Scholar 

  24. Sun, J. Q. and Hsu, C. S. First-passage time probability of nonlinear stochastic systems by generalized cell mapping method. Journal of Sound and Vibration, 124, 233–248 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sun, J. Q. Random vibration analysis of a non-linear system with dry friction damping by the short-time Gaussian cell mapping method. Journal of Sound and Vibration, 180, 785–795 (1995)

    Article  Google Scholar 

  26. Wu, Y. and Zhu, W. Q. Stochastic analysis of a pulse-type prey-predator model. Physical Review E, 77, 041911 (2008)

    Article  MathSciNet  Google Scholar 

  27. Yue, X. L., Xu, W., Wang, L., and Zhou, B. C. Transient and steady-state responses in a self-sustained oscillator with harmonic and bounded noise excitations. Probabilistic Engineering Mechanics, 30, 70–76 (2012)

    Article  Google Scholar 

  28. Yue, X. L., Xu, W., Jia, W. T., and Wang, L. Stochastic response of a ϕ 6 oscillator subjected to combined harmonic and Poisson white noise excitations. Physica A, 392, 2988–2998 (2013)

    Article  MathSciNet  Google Scholar 

  29. Prathap, G. and Varadan, T. K. The inelastic large deformation of beams. Journal of Applied Mechanics, 43, 689–690 (1976)

    Article  Google Scholar 

  30. Cveticanin, L. and Zukovic, M. Melnikov’s criteria and chaos in systems with fractional order deflection. Journal of Sound and Vibration, 326, 768–779 (2009)

    Article  Google Scholar 

  31. Kovacic, I., Rakaric, Z., and Cveticanin, L. A non-simultaneous variational approach for the oscillators with fractional-order power nonlinearities. Applied Mathematics and Computation, 217, 3944–3954 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rakaric, Z. and Kovacic, I. An elliptic averaging method for harmonically excited oscillators with a purely non-linear non-negative real-power restoring force. Communications in Nonlinear Science and Numerical Simulation, 18, 1888–1901 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  33. Liu, D., Xu, W., and Xu, Y. Noise-induced chaos in the elastic forced oscillators with real-power damping force. Nonlinear Dynamics, 71, 457–467 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Han.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11172233, 11302169, 11302170, and 11472212) and the Fundamental Research Funds for the Central Universities (No. 3102014JCQ01079)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Q., Xu, W. & Yue, X. Stochastic response analysis of noisy system with non-negative real-power restoring force by generalized cell mapping method. Appl. Math. Mech.-Engl. Ed. 36, 329–336 (2015). https://doi.org/10.1007/s10483-015-1918-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-015-1918-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation