Skip to main content
Log in

Transverse vibrations of arbitrary non-uniform beams

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Free and steady state forced transverse vibrations of non-uniform beams are investigated with a proposed method, leading to a series solution. The obtained series is verified to be convergent and linearly independent in a convergence test and by the non-zero value of the corresponding Wronski determinant, respectively. The obtained solution is rigorous, which can be reduced to a classical solution for uniform beams. The proposed method can deal with arbitrary non-uniform Euler-Bernoulli beams in principle, but the methods in terms of special functions or elementary functions can only work in some special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

u :

displacement

E :

Young’s modulus

I :

inertialmoment

ρ :

density

A :

area

p :

exciting force

x :

coordinate

f 1(x):

dimensionless bending stiffness

f 2 (x):

dimensionless linear density

L :

length of beam

β :

dimensionless frequency

ω :

cycle frequency

D :

Wronski determinant

c :

integral constant

C :

constant

a :

scale factor

i:

imaginary unit

t :

time

References

  1. Caruntu, D. I. Dynamic modal characteristics of transverse vibrations of cantilevers of parabolic thickness. Mechanics Research Communications, 36(3), 391–404 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Gottlieb, H. P. W. Isospectral Euler-Bernoulli beams with continuous density and rigidity functions. Proceedings of the Royal Society A, 413, 235–250 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gottlieb, H. P. W. Comments on vibration of nonuniform rods and beams. Journal of Sound and Vibration, 195(1), 139–141 (1996)

    Article  Google Scholar 

  4. Ece, M. C., Aydogdu, M., and Taskin, V. Vibration of a variable cross-section beam. Mechanics Research Communications, 34(1), 78–84 (2007)

    Article  MATH  Google Scholar 

  5. Suppiger, E. W. and Taleb, N. J. Free lateral vibration of beams of variable cross section. ZAMP, 7, 501–520 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  6. Abrate, S. Vibration of non-uniform rods and beams. Journal of Sound and Vibration, 185(4), 703–716 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Naguleswaran, S. Comments on “vibration of nonuniform rods and beams”. Journal of Sound and Vibration, 195(2), 331–337 (1996)

    Article  Google Scholar 

  8. Naguleswaran, S. Vibration of an Euler-Bernoulli beam of constant depth and with linearly varying breadth. Journal of Sound and Vibration, 153(3), 509–522 (1992)

    Article  MATH  Google Scholar 

  9. Cranch, E. T. and Adler, A. A. Bending vibrations of variable section beams. Journal of Applied Mechanics, 23(1), 103–108 (1956)

    MATH  Google Scholar 

  10. Conway, H. D., Becker, E. C. H., and Dubil, J. F. Vibration frequencies of tapered bars and circular plates. Journal of Applied Mechanics, 31(2), 329–331 (1964)

    Article  MATH  Google Scholar 

  11. Mabie, H. H. and Rogers, C. B. Transverse vibrations of tapered cantilever beams with end support. Journal of the Acoustical Society of America, 44(6), 1739–1741 (1968)

    Article  Google Scholar 

  12. Mabie, H. H. and Rogers, C. B. Transverse vibrations of double-tapered cantilever beams with end support and with end mass. Journal of the Acoustical Society of America, 55(5), 986–991 (1974)

    Article  Google Scholar 

  13. Goel, R. P. Transverse vibrations of tapered beams. Journal of Sound and Vibration, 47(1), 1–7 (1976)

    Article  MATH  Google Scholar 

  14. Craver, W. L. and Jampala, P. Transverse vibrations of a linearly tapered cantilever beam with constraining springs. Journal of Sound and Vibration, 166(3), 521–529 (1993)

    Article  MATH  Google Scholar 

  15. Auciello, N. M. and Nole, G. Vibrations of a cantilever tapered beam with varying section properties and carrying a mass at the free end. Journal of Sound and Vibration, 214(1), 105–119 (1998)

    Article  Google Scholar 

  16. Caruntu, D. I. Classical Jacobi polynomials, closed-form solutions for transverse vibrations. Journal of Sound and Vibration, 306(3), 467–494 (2007)

    Article  MathSciNet  Google Scholar 

  17. Storti, D. and Aboelnaga, Y. Bending vibrations of a class of rotating beams with hypergeometric solutions. Journal of Applied Mechanics, 54(2), 311–314 (1987)

    Article  MATH  Google Scholar 

  18. Chaudhari, T. D. and Maiti, S. K. Modeling of transverse vibration of beam of linearly variable depth with edge crack. Engineering Fracture Mechanics, 63(4), 425–445 (1999)

    Article  Google Scholar 

  19. Naguleswaran, S. The vibration of a “complete” Euler-Bernoulli beam of constant depth and breadth proportional to axial co-ordinate raised to a positive exponents. Journal of Sound and Vibration, 187(2), 311–327 (1995)

    Article  Google Scholar 

  20. Naguleswaran, S. Vibration in the two principal planes of a nonuniform beam of rectangular crosssection, one side of which varies as the square root of the axial co-ordinate. Journal of Sound and Vibration, 172(2), 305–319 (1994)

    Article  MATH  Google Scholar 

  21. Wright, A. D., Thresher, S. R. W., and Wang, J. L. C. Vibration modes of centrifugally stiffened beam. Journal of Applied Mechanics, 49(1), 197–202 (1982)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Sq., Yang, Sp. Transverse vibrations of arbitrary non-uniform beams. Appl. Math. Mech.-Engl. Ed. 35, 607–620 (2014). https://doi.org/10.1007/s10483-014-1816-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-014-1816-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation